Patents Represented by Attorney Shirley L. Church
  • Patent number: 6537918
    Abstract: A method for plasma etching a semiconductor film stack. The film stack includes at least one layer comprising silicon oxynitride. The method includes etching the silicon oxynitride-comprising layer using an etchant gas mixture comprising chlorine and at least one compound containing fluorine and carbon. The atomic ratio of fluorine to chlorine in the etchant gas ranges between about 3:1 and about 0.01:1; preferably, between about 0.5:1 and about 0.01:1; most preferably, between about 0.25:1 and about 0.1:1. The etchant gas forms a fluorine-comprising polymer or species which deposits on exposed surfaces adjacent to the silicon oxynitride-comprising layer in an amount sufficient to reduce the etch rate of an adjacent material (such as a photoresist) while permitting the etching of the silicon oxynitride-comprising layer.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: March 25, 2003
    Assignee: Applied Materials Inc.
    Inventors: Pavel Ionov, Sung Ho Kim, Dean Li, Chun Yan, James Chang Wang
  • Patent number: 6534416
    Abstract: Copper can be pattern etched in a manner which provides the desired feature dimension and integrity, at acceptable rates, and with selectivity over adjacent materials. To provide for feature integrity, the portion of the copper feature surface which has been etched to the desired dimensions and shape must be protected during the etching of adjacent feature surfaces. To avoid the trapping of reactive species interior of the etched copper surface, hydrogen is applied to that surface. Hydrogen is adsorbed on the copper exterior surface and may be absorbed into the exterior surface of the copper, so that it is available to react with species which would otherwise penetrate that exterior surface and react with the copper interior to that surface. Sufficient hydrogen must be applied to the exterior surface of the etched portion of the copper feature to prevent incident reactive species present due to etching of adjacent feature surfaces from penetrating the previously etched feature exterior surface.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: March 18, 2003
    Assignee: Applied Materials Inc.
    Inventors: Yan Ye, Allen Zhao, Xiancan Deng, Diana Xiaobing Ma
  • Patent number: 6531404
    Abstract: The present disclosure pertains to a method of plasma etching a titanium nitride layer within a semiconductor structure. In many embodiments of the method, the titanium nitride layer is etched using a source gas comprising chlorine and a fluorocarbon. Also disclosed herein is a two-step method of plasma etching a titanium nitride gate consisting of a main etch step, followed by an overetch step which utilizes a source gas comprising chlorine and a bromine-containing compound, to etch a portion of the titanium nitride layer which was not etched in the main etch step. The chlorine/bromine overetch chemistry can be used in conjunction with a chlorine/fluorocarbon main etch chemistry, or with any other titanium nitride etch chemistry known in the art.
    Type: Grant
    Filed: August 4, 2000
    Date of Patent: March 11, 2003
    Assignee: Applied Materials Inc.
    Inventors: Padmapani Nallan, Tong Zhang
  • Patent number: 6515657
    Abstract: An ultrasound imaging system superimposes sectional views created from volumetric ultrasound data and the location data for an intervention device, such as a catheter. The position of an interventional medical device may be shown, in one or more views, relative to organs and tissues within a body as the interventional device is moved. The interventional device positional data is updated continuously and is superimposed on tissue images that may be updated less frequently, resulting in real-time or near real-time images of the interventional device relative to the tissues. The superimposed images permits medical personnel to perform procedures such as angiograms with minimal or no exposure of patients to x-rays and contrasting dye. The look and feel of the familiar fluoroscopy-like imaging may be maintained, or a three dimensional real-time, or near real-time projected image of the intervention medical device relative to an organ or tissue may be provided.
    Type: Grant
    Filed: February 11, 2000
    Date of Patent: February 4, 2003
    Inventor: Claudio I. Zanelli
  • Patent number: 6509069
    Abstract: The present invention pertains to an apparatus and method useful in semiconductor processing. The apparatus and method can be used to provide a seal which enables a first portion of a semiconductor processing chamber to be operated at a first pressure while a second portion of the semiconductor processing chamber is operated at a second, different pressure. The sealing apparatus and method enable processing of a semiconductor substrate under a partial vacuum which renders conductive/convective heat transfer impractical, while at least a portion of the substrate support platform is under a pressure adequate to permit heat transfer using a conductive/convective heat transfer means. The sealing apparatus comprises a thin, metal-comprising layer, typically in the form of a strip or band, brazed to at least two different surfaces within said processing chamber, whereby the first and second portions of the semiconductor processing chamber are pressure isolated from each other.
    Type: Grant
    Filed: May 1, 1997
    Date of Patent: January 21, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Robert E. Davenport, Avi Tepman
  • Patent number: 6503845
    Abstract: A method of plasma etching a patterned tantalum nitride layer, which provides an advantageous etch rate and good profile control. The method employs a plasma source gas comprising a primary etchant to provide a reasonable tantalum etch rate, and a secondary etchant/profile-control additive to improve the etched feature profile. The primary etchant is either a fluorine-comprising or an inorganic chlorine-comprising gas. Where a fluorine-comprising gas is the primary etchant, the profile-control additive is a chlorine-comprising gas. Where the chlorine-comprising gas is the primary etchant, the profile-control additive is an inorganic bromine-comprising gas. By changing the ratio of the primary etchant to the profile-control additive, the etch rate and etch profile of the tantalum nitride can be controlled. For best results, the plasma is preferably a high density plasma (minimum electron density of 1011e−/cm3), and a bias power is applied to the semiconductor substrate to increase the etching anisotropy.
    Type: Grant
    Filed: May 1, 2001
    Date of Patent: January 7, 2003
    Assignee: Applied Materials Inc.
    Inventor: Padmapani Nallan
  • Patent number: 6500762
    Abstract: We have discovered a method of improving step coverage of a copper seed layer deposited over a semiconductor feature surface which is particularly useful for small size features having a high aspect ratio. We have demonstrated that it is possible to increase the copper seed layer coverage simultaneously at the bottom of a high aspect ratio contact via and on the walls of the via by increasing the percentage of the depositing copper species which are ions. The percentage of species ionization which is necessary to obtain sufficient step coverage for the copper seed layer is a function of the aspect ratio of the feature. An increase in the percentage of copper species which are ionized can be achieved using techniques known in the art, including but not limited to applicants' preferred technique, an inductively coupled RF ion metal plasma.
    Type: Grant
    Filed: January 24, 2002
    Date of Patent: December 31, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Imran Hashim, Hong-Mei Zhang, John C. Forster
  • Patent number: 6491835
    Abstract: The present disclosure provides a method for etching trenches, contact vias, or similar features to a depth of 100 &mgr;m and greater while permitting control of the etch profile (the shape of the sidewalls surrounding the etched opening). The method requires the use of a metal-comprising masking material in combination with a fluorine-comprising plasma etchant. The byproduct produced by a combination of the metal with reactive fluorine species must be essentially non-volatile under etch process conditions, and sufficiently non-corrosive to features on the substrate being etched, that the substrate remains unharmed by the etch process. Although aluminum is a preferred metal for the metal-comprising mask, other metals can be used for the masking material, so long as they produce an essentially non-volatile, non-corrosive etch byproduct under etch process conditions.
    Type: Grant
    Filed: December 20, 1999
    Date of Patent: December 10, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Ajay Kumar, Anisul Khan, Wei Liu, John Chao, Jeff Chinn
  • Patent number: 6488862
    Abstract: Copper can be pattern etched at acceptable rates and with selectivity over adjacent materials using an etch process which utilizes a solely physical process which we have termed “enhanced physical bombardment”. Enhanced physical bombardment requires an increase in ion density and/or an increase in ion energy of ionized species which strike the substrate surface. To assist in the removal of excited copper atoms from the surface being etched, the power to the ion generation source and/or the substrate offset bias source may be pulsed. In addition, when the bombarding ions are supplied from a remote source, the supply of these ions may be pulsed. Further, thermal phoresis may be used by maintaining a substrate temperature which is higher than the temperature of a surface in the etch chamber.
    Type: Grant
    Filed: October 27, 1999
    Date of Patent: December 3, 2002
    Assignee: Applied Materials Inc.
    Inventors: Yan Ye, Diana Xiaobing Ma, Gerald Yin
  • Patent number: 6489247
    Abstract: Copper can be pattern etched in a manner which provides the desired feature dimension and integrity, at acceptable rates, and with selectivity over adjacent materials. To provide for feature integrity, the portion of the copper feature surface which has been etched to the desired dimensions and shape must be protected during the etching of adjacent feature surfaces. To avoid the trapping of reactive species interior of the etched copper surface, hydrogen is applied to that surface. Hydrogen is adsorbed on the copper exterior surface and may be absorbed into the exterior surface of the copper, so that it is available to react with species which would otherwise penetrate that exterior surface and react with the copper interior to that surface. Sufficient hydrogen must be applied to the exterior surface of the etched portion of the copper feature to prevent incident reactive species present due to etching of adjacent feature surfaces from penetrating the previously etched feature exterior surface.
    Type: Grant
    Filed: September 8, 1999
    Date of Patent: December 3, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Yan Ye, Allen Zhao, Xiancan Deng, Diana Xiaobing Ma
  • Patent number: 6488823
    Abstract: The present disclosure pertains to our discovery that residual stress residing in a tantalum film or tantalum nitride film can be controlled (tuned) during deposition by adjusting at least two particular process variables which have counteracting effects on the residual film stress. By tuning individual film stresses within a film stack, it is possible to balance stresses within the stack. Process variables of particular interest include: power to the sputtering target process chamber pressure (i.e., the concentration of various gases and ions present in the chamber); substrate DC offset bias voltage (typically an increase in the AC applied substrate bias power); power to an ionization source (typically a coil); and temperature of the substrate upon which the film is deposited. The process chamber pressure and the substrate offset bias most significantly affect the film tensile and compressive stress components, respectively.
    Type: Grant
    Filed: November 4, 1999
    Date of Patent: December 3, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Tony Chiang, Peijun Ding, Barry L. Chin, Bingxi Sun
  • Patent number: 6482745
    Abstract: A method of etching a platinum electrode layer disposed on a substrate to produce a semiconductor device including a plurality of electrodes separated by a distance equal to or less than about 0.3 &mgr;m and having a platinum profile equal to or greater than about 85°. The method comprises heating the substrate to a temperature greater than about 150° C., and etching the platinum electrode layer by employing a high density inductively coupled plasma of an etchant gas comprising chlorine, argon and a gas selected from the group consisting of BCl3, HBr, and mixtures thereof. A semiconductor device having a substrate and a plurality of platinum electrodes supported by the substrate. The platinum electrodes have a dimension (e.g., a width) which include a value equal to or less than about 0.3 &mgr;m and a platinum profile equal to or greater than about 85°.
    Type: Grant
    Filed: May 11, 2000
    Date of Patent: November 19, 2002
    Assignee: Applied Materials, Inc.
    Inventor: Jeng H. Hwang
  • Patent number: 6475326
    Abstract: We have developed a method of anodic bonding which directs cations to a location within a bonding structure which is away from critical bonding surfaces. This prevents the formation of compounds comprising the cations at the critical bonding surfaces. The anodic bonding electrode contacts are made in a manner which concentrates the cations and compounds thereof in a portion of the bonded structure which can be removed, or cleaned to remove the compounds from the structure. A device formed from the bonded structure contains minimal, if any, of the cation-comprising compounds which weaken bond strength within the structure. In the alternative, the cations and compounds thereof are directed to a portion of the bonding structure which does not affect the function of a device which includes the bonded structure.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: November 5, 2002
    Assignee: Applied Materials, Inc.
    Inventor: Harald S. Gross
  • Patent number: 6471833
    Abstract: This invention is directed to a method for rapid plasma etching of materials which are difficult to etch at a high rate. The method is particularly useful in plasma etching silicon nitride layers more than five microns thick. The method includes the use of a plasma source gas that includes an etchant gas and a sputtering gas. Two separate power sources are used in the etching process and the power to each power source as well as the ratio between the flow rates of the etchant gas and sputtering gas can be advantageously adjusted to obtain etch rates of silicon nitride greater than two microns per minute. Additionally, an embodiment of the method of the invention provides a two etch step process which combines a high etch rate process with a low etch rate process to achieve high throughput while minimizing the likelihood of damage to underlying layers. The first etch step of the two-step method provides a high etch rate of about two microns per minute to remove substantially all of a layer to be etched.
    Type: Grant
    Filed: May 11, 2001
    Date of Patent: October 29, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Ajay Kumar, Anisul Khan, Jeffrey D Chin, Dragan V Podlesnik
  • Patent number: 6466881
    Abstract: A method for determining the quality of a protective coating or layer on a structure inside of a reactor chamber. The method includes generating a basis, such as a standard scatter band of impedance, as an acceptable standard for the quality of a protective layer on the inside of a reactor chamber. At least one substrate is processed within a reactor chamber containing a protective coating for protecting the inside of the reactor chamber during processing of the substrate. The method further includes determining the quality of the protective coating, such as by measuring protective characteristics of the protective coating. A method for on-line monitoring of a quality of a coating on the inside of a reactor chamber.
    Type: Grant
    Filed: April 22, 1999
    Date of Patent: October 15, 2002
    Assignee: Applied Materials Inc.
    Inventors: Hong Shih, Joe Sommers, Diana Ma
  • Patent number: 6458516
    Abstract: A method of patterning a layer of dielectric material having a thickness greater than 1,000 Å, and typically a thickness greater than 5,000 Å. The method is particularly useful for forming a high aspect ratio via or a high aspect ratio contact including self-aligned contact structures, where the aspect ratio is typically greater than 3 and the feature size of the contact is about 0.25 &mgr;m or less. In particular, an organic, polymeric-based masking material is used in a plasma etch process for transferring a desired pattern through an underlying layer of dielectric material. The combination of masking material and plasma source gas must provide the necessary high selectivity toward etching of the underlying layer of dielectric material. The selectivity is preferably greater than 3:1, where the etch rate of the dielectric material is at least 3 times greater than the etch rate of the organic, polymeric-based masking material.
    Type: Grant
    Filed: April 18, 2000
    Date of Patent: October 1, 2002
    Assignee: Applied Materials Inc.
    Inventors: Yan Ye, Pavel Ionov, Allen Zhao, Peter Hsieh, Diana Ma, Chun Yan, Jie Yuan
  • Patent number: 6458255
    Abstract: We have discovered that, by depositing a tantalum layer upon a substrate at a temperature of at least 325° C., it is possible to obtain an ultra low resistivity which is lower than that previously published in the literature. In addition, it is possible deposit a TaxNy film having an ultra low resistivity by depositing the TaxNy film upon a substrate at a temperature of at least 275° C., wherein x is 1 and y ranges from about 0.05 to about 0.18. These films having an ultra low resistivity are obtained at temperatures far below the previously published temperatures for obtaining higher resistivity films. A combination of elevated substrate temperature and ion bombardment of the film surface during deposition enables the use of lower substrate temperatures while maintaining optimum film properties.
    Type: Grant
    Filed: January 25, 2001
    Date of Patent: October 1, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Tony Chiang, Peijun Ding, Barry Chin
  • Patent number: 6455431
    Abstract: In general, the present disclosure pertains to a method for removing photoresist from locations on a semiconductor structure where its presence is undesired. In one embodiment, a method is disclosed for descumming residual photoresist material from areas where it is not desired after patterning of the photoresist. In another embodiment, a misaligned patterned photoresist is stripped from a semiconductor substrate surface. In particular, the method comprises exposing the semiconductor structure to a plasma generated from a source gas comprising NH3. A substrate bias voltage is utilized in both methods in order to produce anisotropic etching. In the descumming embodiment, the critical dimensions of the patterned photoresist are maintained. In the photoresist stripping embodiment, a patterned photoresist is removed without adversely affecting a partially exposed underlying layer of an organic dielectric.
    Type: Grant
    Filed: August 1, 2000
    Date of Patent: September 24, 2002
    Assignee: Applied Materials Inc.
    Inventors: Chang Lin Hsieh, Hui Chen, Jie Yuan, Yan Ye
  • Patent number: 6454919
    Abstract: A physical vapor deposition apparatus is provided with at least one workpiece processing chamber and a programmable control device for controlling process variables within the processing chamber. The control device is programmed to vary the power to an aluminum sputtering target during deposition of aluminum layers. By controlling the applied power, the rate of deposition of the aluminum is varied in a manner which reduces or avoids the creation of voids during the filling of high aspect ratio features.
    Type: Grant
    Filed: September 27, 2000
    Date of Patent: September 24, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Arvind Sundarrajan, Dinesh Saigal
  • Patent number: 6448657
    Abstract: The present invention pertains to a semiconductor device microstructure, and to a method of forming that microstructure, which reduces or prevents junction spiking and to a method of forming that microstructure. In particular, a semiconductor contact microstructure comprises a feature which includes a silicon base and at least one sidewall extending upward from the silicon base. The sidewall includes a silicon portion in contact with the silicon base, where the height of the silicon portion of the sidewall above the silicon base is typically less than about 0.5 &mgr;m. The sidewall also includes at least one portion which comprises a first dielectric material which is in contact with (and typically extends upward from) the silicon portion of the sidewall. Overlying at least the silicon portion of the sidewall is a layer of a second dielectric material, preferably silicon oxide.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: September 10, 2002
    Assignee: Applied Materials, Inc.
    Inventor: Fernand Dorleans