Patents Represented by Attorney W. G. Muller
  • Patent number: 6750306
    Abstract: Hyperbranched copolymers comprising at least one C2-C20 &agr;-monoolefin monomers and 0.2 to 20 mole % of at least one &agr;, &ohgr;-non-conjugated diene monomers having 5 to 18 carbon atoms are prepared by coordination (metallocene) copolymerization of the monomers and quenching the reaction prior to the formation of a gelled product. The building blocks of the products are characterized by a number average molecular weight less than 5 times the entanglement molecular weight of a homopolymer prepared using the same catalyst but in the absence of the diene component.
    Type: Grant
    Filed: June 7, 2001
    Date of Patent: June 15, 2004
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventor: Patrick Brant
  • Patent number: 6136930
    Abstract: The invention generally relates to a catalyst, particularly a metallocene catalyst and catalyst system useful in the polymerization of olefins into a polymer product. Specifically, a catalyst system with (n-PrCp).sub.2 ZrCl.sub.2 exhibits high catalytic activity.
    Type: Grant
    Filed: May 26, 1998
    Date of Patent: October 24, 2000
    Assignee: Exxon Chemical Patents, Inc.
    Inventors: Robert Lee Bamberger, Moses Olukayode Jejelowo
  • Patent number: 6127497
    Abstract: The invention encompasses late transition metal catalyst systems and their use in polymerization processes, particularly in solution, 2-phase suspension and super-critical phase polymerization of ethylene-containing polymers. Preferred embodiments include the use of a late transition metal catalyst system comprising a Group 8, 9, 10, or 11 metal complex stabilized by a bidentate ligand structure for polymerization under elevated ethylene pressure, or concentration, conditions.
    Type: Grant
    Filed: June 17, 1997
    Date of Patent: October 3, 2000
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Phillip T. Matsunaga, Jo Ann Marie Canich, George Alan Vaughan, David Edward Gindelberger, Rinaldo Soria Schiffino, Kevin Richard Squire, Rolf Bodo Temme
  • Patent number: 6117962
    Abstract: Stereospecific polypropylene macromers having a high percentage of vinyl terminal bonds and a method for preparing them are provided. The stereospecific polypropylene macromers have number average molecular weights (M.sub.n) of about 2,000 Daltons to about 50,000 Daltons, and the total number of vinyl groups per 1000 carbon atoms is greater than or equal to 7000.div.M.sub.n. The method for preparing the macromers involves:a) contacting, in solution, at a temperature from about 90.degree. C. to about 120.degree. C., two or more propylene monomers with a catalyst composition comprising a chiral, stereorigid transition metal catalyst compound; andb) recovering stereospecific polypropylene chains having number average molecular weights of about 2,000 Daltons to about 50,000 Daltons and significant vinyl unsaturation.
    Type: Grant
    Filed: February 6, 1998
    Date of Patent: September 12, 2000
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Weiqing Weng, Armen Dekmezian, Eric J. Markel, Avinash Gadkari, David L. Peters
  • Patent number: 5972823
    Abstract: The invention is directed to a catalyst composition suitable for addition reactions of ethylenically and acetylenically unsaturated monomers comprising a metal oxide support having covalently bound to the surface thereof directly through the oxygen atom of the metal oxide an activator anion that is also ionically bound to a catalytically active transition metal cation compound. The invention includes a preparation process for the invention catalyst composition exemplified by reacting a Lewis acid, such as trisperfluorophenyl boron with residual silanol groups of a silica support, preferably then reacting with a Lewis base such as diethylaniline, so as to prepare a silica bound anionic activator that when combined with a suitable transition metal compound will protonate it so as to form the ionic catalyst system. Use of the invention catalyst to polymerize alpha-olefins is exemplified.
    Type: Grant
    Filed: July 14, 1997
    Date of Patent: October 26, 1999
    Assignee: Exxon Chemical Patents Inc
    Inventor: John Flexer Walzer, Jr.
  • Patent number: 5942587
    Abstract: An ethylene cyclic olefin polymer, particularly an ethylene/norbornene copolymer and an ethylene/norbornene/alpha olefin terpolymer resin, of improved toughness and processibility for film production. This invention provides ethylene based resins which are processible like an LLDPE but which are significantly improved with respect to their capability to be fabricated into a film layer, particularly by a blown bubble extrusion technique. Films prepared of the resins of this invention are significantly improved with respect to certain of their film properties, such as tear strength, without detracting from the beneficial properties that an LLDPE-like resin otherwise provides to a film. Molding application of the above E/NB copolymers and E/NB/O terpolymers is also disclosed.
    Type: Grant
    Filed: November 21, 1997
    Date of Patent: August 24, 1999
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Palanisamy Arjunan, Bruce A. Harrington, Eric J. Markel, Scott K. Jackson
  • Patent number: 5907021
    Abstract: A polymerization process for olefinically or acetylenically unsaturated monomers is disclosed. The process comprises contacting the one or more of the monomers with a suitable ionic catalyst system in the presence of a long-chain, linear alkyl ligand-containing organo aluminum compound. Preferred ionic catalysts are derived from 1) bridged hafnium compounds, 2) silicon bridged monocyclopentadienyl titanium compounds and 3) unbridged, bulky Group 15 containing, bulky monocyclopentadienyl titanium compounds, and a non-coordinating anion precursor compound. A class of preferred anion precursors consists of hydrated salts comprising a Group 1 or 2 cation and a non-coordinating anion. Using the preferred ionic catalysts high temperature processes, e.g., at or above 90.degree. C. can be conducted to prepare polyolefins, particularly ethylene copolymers, of both high molecular weight and high comonomer content.
    Type: Grant
    Filed: March 26, 1998
    Date of Patent: May 25, 1999
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Howard William Turner, Charles Stanley Speed, Bernard Jean Folie, Donna Jean Crowther, George Alan Vaughan, Richard Allen Fisher, John Flexer Walzer, Jr.
  • Patent number: 5866665
    Abstract: Substantially random ethylene copolymers containing at least 3.0 mole percent of geminally disubstituted olefin monomers are described. The geminally disubstituted olefin monomers can be represented by the generic formula R.sub.1 =R.sub.2 (R.sub.3)(R.sub.4), where R.sub.1 is CH.sub.2, R.sub.2 is C, and R.sub.3 and R.sub.4 are, independently, essentially linear hydrocarbyl groups having from 1 to 30 carbon atoms, or more, and containing one carbon atom bound directly to R.sub.2. The copolymers can be prepared by coordination polymerization by means of contacting at least one geminally disubstituted olefin monomer and ethylene, optionally with one or more other coordination polymerizable monomers, with a catalyst system comprising a monocyclopentadienyl, heteroatom-containing Group 4 transition metal catalyst component.
    Type: Grant
    Filed: October 28, 1997
    Date of Patent: February 2, 1999
    Assignee: Exxon Chemical Patents, Inc.
    Inventors: Timothy Daniel Shaffer, Jo Ann Marie Canich, Kevin Richard Squire
  • Patent number: 5767208
    Abstract: A polymerization process for olefinically or acetylenically unsaturated monomers is disclosed. The process comprises contacting the one or more of the monomers with a suitable ionic catalyst system in the presence of a long-chain, linear alkyl ligand-containing organo aluminum compound. Preferred ionic catalysts are derived from 1) bridged hafnium compounds, 2) silicon bridged monocyclopentadienyl titanium compounds and 3) unbridged, bulky Group 15 containing, bulky monocyclopentadienyl titanium compounds, and a non-coordinating anion precursor compound. A class of preferred anion precursors consists of hydrated salts comprising a Group 1 or 2 cation and a non-coordinating anion. Using the preferred ionic catalysts high temperature processes, e.g., at or above 90.degree. C. can be conducted to prepare polyolefins, particularly ethylene copolymers, of both high molecular weight and high comonomer content.
    Type: Grant
    Filed: December 18, 1996
    Date of Patent: June 16, 1998
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Howard William Turner, George Alan Vaughan, Richard Allen Fisher, John Flexer Walzer, Jr., Charles Stanley Speed, Bernard Jean Folie, Donna Jean Crowther
  • Patent number: 5763556
    Abstract: Substantially random ethylene copolymers containing at least 3.0 mole percent of geminally disubstituted olefin monomers are described. The geminally disubstituted olefin monomers can be represented by the generic formula R.sub.1 =R.sub.2 (R.sub.3)(R.sub.4), where R.sub.1 is CH.sub.2, R.sub.2 is C, and R.sub.3 and R.sub.4 are, independently, essentially linear hydrocarbyl groups having from 1 to 30 carbon atoms, or more, and containing one carbon atom bound directly to R.sub.2. The copolymers can be prepared by coordination polymerization by means of contacting at least one geminally disubstituted olefin monomer and ethylene, optionally with one or more other coordination polymerizable monomers, with a catalyst system comprising a monocyclopentadienyl, heteroatom-containing Group 4 transition metal catalyst component.
    Type: Grant
    Filed: May 21, 1996
    Date of Patent: June 9, 1998
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Timothy Daniel Shaffer, Jo Ann Marie Canich, Kevin Richard Squire
  • Patent number: 5703183
    Abstract: A carbocationic catalyst composition comprising an initiator of water, a tertiary alkyl or aralkyl halide, ester, ether, carboxylic acid, acid halide or a polymeric halide, a co-initiator of organometal alkoxide halides, organometal phenoxide halides and/or organometal carboxyl halides is used to produce polymers particularly polyisobutylene and isobutylene/para-methyl-styrene copolymers.
    Type: Grant
    Filed: September 16, 1996
    Date of Patent: December 30, 1997
    Assignee: Exxon Chemical Patents Inc.
    Inventor: Timothy Daniel Shaffer
  • Patent number: 5693706
    Abstract: The invention comprises a hydrogenated hydrocarbon resin suitable as tackifier for acrylic adhesive polymers, having greater than 20% aromatic protons after hydrogenation, a z-average molecular weight of less than about 1800, a narrow molecular weight distribution, typically of less than or equal to 2.1, and a softening point of from 40.degree. C. to about 120.degree. C. It additionally comprises a method for preparing a hydrogenated aromatic tackifier resin suitable as tackifier for acrylic adhesive polymers comprising the steps of: a) polymerizing under Friedel-Crafts polymerization conditions steam-cracked petroleum distillates, or fractions thereof, having boiling points between about 135.degree. C. and 220.degree. C. and containing at least 40% of by weight vinyl aromatic monomer contents, in the presence of a chain transfer agent; and b) catalytically hydrogenating the results of a) such that at least 75% of the aromaticity is retained.
    Type: Grant
    Filed: February 14, 1997
    Date of Patent: December 2, 1997
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Steven George Hentges, Frank Carl Jagisch, Edward Francis Smith
  • Patent number: 5693721
    Abstract: The invention comprises a hydrogenated hydrocarbon resin suitable as tackifier for acrylic adhesive polymers, having greater than 20% aromatic protons after hydrogenation, a z-average molecular weight of less than about 1800, a narrow molecular weight distribution, typically of less than or equal to 2.1, and a softening point of from 40.degree. C. to about 120.degree. C. It additionally comprises a method for preparing a hydrogenated aromatic tackifier resin suitable as tackifier for acrylic adhesive polymers comprising the steps of: a) polymerizing under Friedel-Crafts polymerization conditions steam-cracked petroleum distillates, or fractions thereof; having boiling points between about 135.degree. C. and 220.degree. C. and containing at least 40% of by weight vinyl aromatic monomer contents, in the presence of a chain transfer agent; and b) catalytically hydrogenating the results of a) such that at least 75% of the aromaticity is retained.
    Type: Grant
    Filed: February 14, 1997
    Date of Patent: December 2, 1997
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Steven George Hentges, Frank Carl Jagisch, Edward Francis Smith
  • Patent number: 5643847
    Abstract: The invention is directed to a catalyst composition suitable for addition reactions of ethylenically and acetylenically unsaturated monomers comprising a metal oxide support having covalently bound to the surface thereof directly through the oxygen atom of the metal oxide an activator anion that is also ionically bound to a catalytically active transition metal cation compound. The invention includes a preparation process for the invention catalyst composition exemplified by reacting a Lewis acid, such as trisperflourophenyl boron with residual silanol groups of a silica support, preferably then reacting with a Lewis base such as diethylaniline, so as to prepare a silica bound anionic activator that when combined with a suitable transition metal compound will protonate it so as to form the ionic catalyst system. Use of the invention catalyst to polymerize alpha-olefins is exemplified.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: July 1, 1997
    Assignee: Exxon Chemical Patents Inc.
    Inventor: John Flexer Walzer, Jr.
  • Patent number: 5635573
    Abstract: Cycloolefin/alpha-olefin copolymers in a molar ratio from 5/95 to 95/5, optionally including long linear alpha-olefin, branched alpha-olefins and/or polyenes as additional comonomers, are prepared using a cyclopentadienyl metallocene catalyst system based on a transition metal compound from Group 4 of the Periodic Table of Elements. The copolymers have a high molecular weight, a narrow molecular weight distribution and a substantially uniform, random comonomer distribution.
    Type: Grant
    Filed: March 29, 1995
    Date of Patent: June 3, 1997
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Bruce A. Harrington, Gregory G. Hlatkey, Jo Ann M. Canich, Natalie A. Merrill
  • Patent number: 5625016
    Abstract: This invention is a solution process for the preparation of high molecular weight ethylene-.alpha.-olefin-diolefin copolymers comprising contacting ethylene, one or more .alpha.-olefin monomer, and optionally one or more diene monomer, with a catalyst system at a polymerization temperature at or above about 80.degree. C., ethylene, one or more .alpha.-olefin monomer, and optionally one or more diene monomer, with a catalyst system comprising an unbridged Group 4 metal compound having a bulky monocyclopentadienyl ligand, a uninegative bulky Group 15 ligand and two uninegative, activation reactive ligands and a catalyst activator compound. The process can be advantageously practiced a reaction temperature of at least 80.degree. C., most preferably above 100.degree. C., to achieve high number average molecular weight polymer having high .alpha.-olefin monomer and diene monomer contents with high diene conversion rates.
    Type: Grant
    Filed: October 20, 1995
    Date of Patent: April 29, 1997
    Assignee: Exxon Chemical Patents, Inc.
    Inventors: Rinaldo S. Schiffino, Donna J. Crowther
  • Patent number: 5621054
    Abstract: A copolymerization process suitable for the preparation of high crystalline melting point cyclic olefin copolymers comprising contacting ethylene, and at least one cyclic olefin with an active polymerization catalyst comprising a Group 4 transition metal compound containing an asymmetrically substituted monocyclopentadienyl ancillary ligand, a bulky substituent-containing heteroatom ligand, the monocyclopentadienyl and heteroatom ligands being covalently bridged is disclosed. Ethylene/norbornene copolymers prepared in accordance with the invention exhibited crystalline melting points of about 250.degree. C., and were prepared at high catalyst activity levels with feed ratios less than 6:1 of norbornene to ethylene.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: April 15, 1997
    Assignee: Exxon Chemical Patents Inc.
    Inventor: Bruce A. Harrington
  • Patent number: 5536796
    Abstract: The invention generally relates to a catalyst, particularly a metallocene catalyst and catalyst system useful in the polymerization of olefins into a polymer product. The polymer product has a broad molecular weight distribution, a high molecular weight and a narrow composition distribution and is easily processable.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: July 16, 1996
    Assignee: Exxon Chemical Company
    Inventors: Moses O. Jejelowo, Robert L. Bamberger
  • Patent number: 5529965
    Abstract: This invention is generally directed toward a supported catalyst system useful for polymerizing olefins. The method for supporting the catalyst of the invention provides for a supported mixed metallocene/non-metallocene catalyst useful in a process for polymerizing olefins.
    Type: Grant
    Filed: October 28, 1994
    Date of Patent: June 25, 1996
    Assignee: Exxon Chemical Patents Inc.
    Inventor: Main Chang
  • Patent number: 5470927
    Abstract: A method is disclosed for polymerizing olefins, diolefins, or acetylenically unsaturated monomers containing two or more carbon atoms, either alone or in combination with each other or with other polymerizable monomers, comprising contacting the monomers with an ionic polymerization catalyst comprising (1) a cation derived from a bis(cyclopentadienyl) Group IV-B metal compound by abstracting a ligand to create a positively charged species and (2) a stabilizing non-coordinating anion, said anion being sufficiently labile to permit displacement by the olefin, diolefin and/or acetylenically unsaturated monomer during polymerization. The process provides means of producing narrow molecular weight polyolefin polymers, increasing comonomer incorporation in copolymers and avoiding metal impurities in the polymer products.
    Type: Grant
    Filed: October 5, 1994
    Date of Patent: November 28, 1995
    Assignee: Exxon Chemical Patents Inc.
    Inventors: Howard W. Turner, Gregory G. Hlatky, Richard R. Eckman