Patents Assigned to Anokiwave, Inc.
  • Patent number: 11177227
    Abstract: A phased array has a laminar substrate, a plurality of elements on the laminar substrate forming a patch phased array, and integrated circuits on the laminar substrate. Each integrated circuit is a high frequency integrated circuit configured to control receipt and/or transmission of signals by the plurality of elements in the patch phased array. In addition, each integrated circuit has a substrate side coupled with the laminar substrate, and a back side. The phased array also has a plurality of heat sinks. Each integrated circuit is coupled with at least one of the heat sinks. At least one of the integrated circuits has a thermal interface material in conductive thermal contact with its back side. The thermal interface material thus is between the at least one integrated circuit and one of the heat sinks. Preferably, the thermal interface material has a magnetic loss tangent value of between 0.5 and 4.5.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: November 16, 2021
    Assignee: Anokiwave, Inc.
    Inventors: Gaurav Menon, Jonathan P. Comeau, Nitin Jain
  • Patent number: 11133603
    Abstract: In certain exemplary embodiments, register banks are used to allow for fast beam switching (FBS) in a phased array system. Specifically, each beam forming channel is associated with a register bank containing M register sets for configuring such things as gain/amplitude and phase parameters of the beam forming channel. The register banks for all beam forming channels can be pre-programmed and then fast beam switching circuitry allows all beam forming channels across the array to be switched to use the same register set from its corresponding register bank at substantially the same time, thereby allowing the phased array system to be quickly switched between various beam patterns and orientations. Additionally or alternatively, active power control circuitry may be used to control the amount of electrical power provided to or consumed by one or more individual beam forming channels such as to reduce DC power consumption of the array and/or to selectively change the effective directivity of the array.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: September 28, 2021
    Assignee: Anokiwave, Inc.
    Inventors: Kristian N. Madsen, Wade C. Allen, Jonathan P. Comeau, Robert J. McMorrow, David W. Corman, Nitin Jain, Robert Ian Gresham, Gaurav Menon, Vipul Jain
  • Patent number: 11114990
    Abstract: An envelope stacking power amplifier system reduces current for a given output power level without sacrificing the ability to support large voltage swings at saturation and therefore increases efficiency at the maximum linear operating power and all power levels below that. The system includes a stack/unstack controller including circuitry configured to switch the RF power amplifier system between a stacked mode in which first and second RF amplifiers are coupled in a stacked configuration and an unstacked mode in which the first and second RF amplifiers are coupled in an unstacked configuration in response to one or more mode-control signals, the stacked configuration providing reduced current compared to the unstacked configuration.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: September 7, 2021
    Assignee: Anokiwave, Inc.
    Inventors: Susanne Paul, Akhil Garlapati, Yan Li
  • Patent number: 11081792
    Abstract: A phased array system has a plurality of beam-forming elements, and a plurality of beam-forming integrated circuits in communication with the beam-forming elements. Each beam-forming integrated circuit has a corresponding register bank with a plurality of addressable and programmable register sets. In addition, each beam-forming integrated circuit has at least two different types of beam-forming ports. Specifically, each beam-forming element has a serial data port for receiving serial messages, and a parallel mode data port for receiving broadcast messages. Both the serial and broadcast messages manage the data in its register bank. The beam-forming integrated circuits receive the broadcast messages in parallel with the other beam-forming integrated circuits, while the beam-forming integrated circuits receive the serial messages serially—sequentially with regard to other beam-forming integrated circuits.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: August 3, 2021
    Assignee: Anokiwave, Inc.
    Inventors: Vipul Jain, Scott Humphreys, David W. Corman, Robert Ian Gresham, Kristian N. Madsen, Robert J. McMorrow, Jonathan P. Comeau, Nitin Jain, Gaurav Menon
  • Patent number: 11082079
    Abstract: Exemplary embodiments dynamically select the LO frequency and mixer mode (i.e., low-side LO injection or high-side LO injection) for upconversion based on the desired RF output frequency in order to mitigate the effects of spurious and LO leakage signals that could violate radiation emission limits, e.g., in the case where the IF signal frequency is smaller than the RF operating band. By dynamically switching the LO frequency and mixer mode as a function of the requested operating RF channel, low-level emissions and spurious signal compliance with restricted bands can be achieved.
    Type: Grant
    Filed: August 6, 2020
    Date of Patent: August 3, 2021
    Assignee: ANOKIWAVE, INC.
    Inventors: Robert Ian Gresham, Shmuel Ravid, Kristian N. Madsen, Tissana T. Kijsanayotin
  • Publication number: 20210235282
    Abstract: A beamforming integrated circuit system is configured to optimize performance. Among other things, the system may run at a lower power than conventional integrated circuits, selectively disable branches to control certain system functions, and/or selectively position ground pads around receiving pads to enhance isolation. The system also may use a beamforming integrated circuit as a distribution circuit for a number of similar or like beamforming integrated circuits.
    Type: Application
    Filed: December 24, 2018
    Publication date: July 29, 2021
    Applicant: ANOKIWAVE, INC.
    Inventors: Pavel Brechko, David W. Corman, Vipul Jain, Shamsun Nahar, Jason Durbin, Nitin Jain
  • Patent number: 11063336
    Abstract: A conditioning integrated circuit (CDIC) chip can be used to aggregate signals to/from a number of beam forming integrated circuit (BFIC) chips, and signals to/from a number of CDIC chips can be aggregated by an interface integrated circuit (IFIC) chip. The CDIC chip includes temperature compensation circuitry to adjust the gain of the transmit and receive signals as a function of temperature based on inputs from a temperature sensor. The CDIC may include a plurality of beam forming channels each having a transmit circuit and a receive circuit, a common port coupled to the beam forming channels for selectively providing a common transmit signal to the beam forming channels and receiving a common receive signal from the beam forming channels, and a temperature compensation circuit configured to provide variable attenuation to the common transmit signal and the common receive signal based on a temperature sense signal.
    Type: Grant
    Filed: April 4, 2019
    Date of Patent: July 13, 2021
    Assignee: Anokiwave, Inc.
    Inventors: Kristian N. Madsen, Robert J. McMorrow, David W. Corman, Nitin Jain, Robert Ian Gresham, Gaurav Menon, Vipul Jain, Jonathan P. Comeau, Shmuel Ravid
  • Patent number: 11011853
    Abstract: A phased array includes a laminar substrate having both 1) a plurality of elements forming a patch phased array, and 2) a plurality of integrated circuits. Each integrated circuit is configured to control receipt and transmission of signals by the plurality of elements in the patch phased array. The integrated circuits also are configured to operate the phased array at one or more satellite frequencies—to transmit signals to and/or receive signals from a satellite. Each integrated circuit physically couples with one corresponding element so that incoming signals are received by the corresponding element in a first polarization, and outgoing signals are transmitted by the corresponding element in a second polarization. The phased array isolates the transmit signals from the receive signals by orienting the first and second polarizations differently.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: May 18, 2021
    Assignee: Anokiwave, Inc.
    Inventors: David W. Corman, Vipul Jain, Timothy Carey, Nitin Jain
  • Patent number: 10998640
    Abstract: A laminar phased array has a first sub-array configured to operate in one of a receive mode with a first polarity and a transmit mode with a second polarity, and a second sub-array configured to operate in one of a receive mode with the second polarity and a transmit mode with the first polarity. The first polarity is physically orthogonal to the second polarity. The array also has a controller configured to control the first and second sub-arrays so that they operate together in either 1) a receive mode or 2) a transit mode. Accordingly, both sub-arrays are configured to operate at the same time to receive signals in the first and second polarities when in the receive mode. In a corresponding manner, both sub-arrays are configured to operate at the same time to transmit signals in the first and second polarities when in the transmit mode.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: May 4, 2021
    Assignee: Anokiwave, Inc.
    Inventors: Timothy Carey, Nitin Jain, Jason Durbin, David W. Corman, Vipul Jain
  • Patent number: 10985819
    Abstract: This patent application describes systems, devices, and methods for element-level self-calculation of phased array vectors by a beam forming ASIC using interpolation and a look-up table for calculation of phase setting values such as for fast beam steering.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: April 20, 2021
    Assignee: Anokiwave, Inc.
    Inventors: Jason Durbin, Nitin Jain
  • Patent number: 10862222
    Abstract: In certain exemplary embodiments, register banks are used to allow for fast beam switching (FBS) in a phased array system. Specifically, each beam forming channel is associated with a register bank containing M register sets for configuring such things as gain/amplitude and phase parameters of the beam forming channel. The register banks for all beam forming channels can be preprogrammed and then fast beam switching circuitry allows all beam forming channels across the array to be switched to use the same register set from its corresponding register bank at substantially the same time, thereby allowing the phased array system to be quickly switched between various beam patterns and orientations. Additionally or alternatively, active power control circuitry may be used to control the amount of electrical power provided to or consumed by one or more individual beam forming channels such as to reduce DC power consumption of the array and/or to selectively change the effective directivity of the array.
    Type: Grant
    Filed: June 10, 2019
    Date of Patent: December 8, 2020
    Assignee: Anokiwave, Inc.
    Inventors: Kristian N. Madsen, Wade C. Allen, Jonathan P. Comeau, Robert J. Mcmorrow, David W. Corman, Nitin Jain, Robert Ian Gresham, Gaurav Menon, Vipul Jain
  • Patent number: 10855383
    Abstract: A system and a method for calibrating an antenna using trim bits and non-volatile memory is disclosed. In one aspect, an apparatus includes a power amplifier configured to at least amplify the output signal of the first antenna. The power amplifier includes multiple stages. The apparatus further includes a trim control circuit configured to adjust a bias of one of the stages of the power amplifier, using trim bits from non-volatile memory. The trim control circuit is further configured to scale the bias of one of the plurality of stages of the power amplifier by an integer between 0 and 2n?1 corresponding to a binary number formed by the first plurality of trim bits, wherein n corresponds to the number of trim bits.
    Type: Grant
    Filed: March 14, 2019
    Date of Patent: December 1, 2020
    Assignee: ANOKIWAVE, INC.
    Inventors: Robert McMorrow, Vipul Jain, Mikhail Shirokov, Kevin B. Greene, Susanne A. Paul, Shamsun Nahar
  • Patent number: 10833391
    Abstract: An integrated circuit system has a die with first and second sides, and contains high frequency circuitry operating at mm-wave frequencies. The system also has a plurality of interfaces (on the first side) in electrical communication with the high frequency circuitry, and a heat sink having a bottom surface with a first region and an aperture region. The first region is in physical and conductive contact with the die, while the aperture region forms a concavity with an inner concave surface that is spaced from the die.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: November 10, 2020
    Assignee: ANOKIWAVE, INC.
    Inventors: Gaurav Menon, Jonathan P. Comeau, Andrew Street, Scott Mitchell, Robert J. McMorrow, Christopher Jones
  • Patent number: 10826195
    Abstract: Illustrative embodiments significantly improve RF isolation in a packaged integrated circuit by separating the pins/pads associated with multiple RF channels from one another and also from pins/pads associated with digital circuits. Specifically, in certain exemplary embodiments, the integrated circuit is configured with the pins/pad for the digital circuits on a first edge of the chip, the pins/pads for common RF signals on a second edge of the chip opposite the first edge, and the pins/pads for the individual RF channels on third and fourth edges of the chip. The pins/pads associated with each RF channel may include multiple pins/pads (an “RF group”) and may have a central RF pin/pad with a ground pin/pad on each side of the central RF pin/pad. One or more ground pins/pads may be placed between adjacent RF groups on a given edge of the chip.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: November 3, 2020
    Assignee: ANOKIWAVE, INC.
    Inventors: Kristian N. Madsen, Vipul Jain, Amir Esmaili, Chad Cookinham, Noyan Kinayman, Shamsun Nahar, David W. Corman, Nitin Jain
  • Publication number: 20200295853
    Abstract: A system and a method for calibrating an antenna using trim bits and non-volatile memory is disclosed. In one aspect, an apparatus includes a power amplifier configured to at least amplify the output signal of the first antenna. The power amplifier includes multiple stages. The apparatus further includes a trim control circuit configured to adjust a bias of one of the stages of the power amplifier, using trim bits from non-volatile memory. The trim control circuit is further configured to scale the bias of one of the plurality of stages of the power amplifier by an integer between 0 and 2n-1 corresponding to a binary number formed by the first plurality of trim bits, wherein n corresponds to the number of trim bits.
    Type: Application
    Filed: March 14, 2019
    Publication date: September 17, 2020
    Applicant: ANOKIWAVE, INC.
    Inventors: Robert McMorrow, Vipul Jain, Mikhail Shirokov, Kevin B. Greene, Susanne A. Paul, Shamsun Nahar
  • Patent number: 10777888
    Abstract: A beamforming integrated circuit system for use in a phased array has a microchip with RF circuitry, and a plurality of (on chip) interfaces electrically connected with the RF circuitry. The plurality of interfaces includes a signal interface, a first ground interface, and a second ground interface. The signal interface is configured to communicate an RF signal, and both the first and second ground interfaces are adjacent to the signal interface. The system also has a material ring circumscribing the plurality of interfaces, and at least one RF ground path coupled with the material ring.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: September 15, 2020
    Assignee: ANOKIWAVE, INC.
    Inventors: Vipul Jain, Noyan Kinayman, Robert J. McMorrow, Kristian N. Madsen, Shamsun Nahar, Nitin Jain
  • Patent number: 10763226
    Abstract: A phased array has a laminar substrate, a plurality of elements on the laminar substrate forming a patch phased array, and integrated circuits on the laminar substrate. Each integrated circuit is a high frequency integrated circuit configured to control receipt and/or transmission of signals by the plurality of elements in the patch phased array. In addition, each integrated circuit has a substrate side coupled with the laminar substrate, and a back side. The phased array also has a plurality of heat sinks. Each integrated circuit is coupled with at least one of the heat sinks. At least one of the integrated circuits has a thermal interface material in conductive thermal contact with its back side. The thermal interface material thus is between the at least one integrated circuit and one of the heat sinks. Preferably, the thermal interface material has a magnetic loss tangent value of between 0.5 and 4.5.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: September 1, 2020
    Assignee: ANOKIWAVE, INC.
    Inventors: Gaurav Menon, Jonathan P. Comeau, Nitin Jain
  • Patent number: 10742288
    Abstract: A beamforming integrated circuit has a single channel with a transmit chain and a receive chain. The transmit chain is configured to transmit an output signal and, in a corresponding manner, the receive chain is configured to receive an input signal. The integrated circuit also has separate horizontal and vertical polarity ports, and a double pole, double throw switch operably coupled between the chains and the ports. The double pole, double throw switch is configured to switch between operation in a first mode and a second mode.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: August 11, 2020
    Assignee: ANOKIWAVE, INC.
    Inventors: Robert J. McMorrow, Vipul Jain, Wade C. Allen, David W. Corman, Robert Ian Gresham, Kristian N. Madsen, Nitin Jain
  • Patent number: 10608756
    Abstract: A system and a method for calibrating an output signal of an antenna is disclosed. In one aspect, an apparatus includes a first digital adder configured to generate a gain offset by at least adding gain calibration data from non-volatile memory and gain command data from static memory. The apparatus further includes an amplitude gain circuit configured to modify, based at least in part on the gain offset, an amplitude of a first output signal of a first antenna. The modified amplitude of the first output signal is provided to enable pre-calibration of the first output signal. The apparatus further includes a power detector configured to measure an output power of the first output signal. The apparatus further includes at least one processor configured to generate a difference between the measured and expected output power, and adjust gain command data in response to the generated difference.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: March 31, 2020
    Assignee: ANOKIWAVE, INC.
    Inventors: Vipul Jain, Robert Ian Gresham, Robert McMorrow, David Warren Corman, Nitin Jain
  • Patent number: 10587044
    Abstract: A beamforming integrated circuit system for use in a phased array has a microchip with RF circuitry, a bottom surface, and a plurality of interfaces electrically connected with the RF circuitry. The plurality of interfaces includes a plurality of static interfaces and a plurality of RF interfaces. The plurality of static interfaces are on the bottom surface of the microchip and adjacent to each other. The plurality of RF interfaces are also on the bottom surface of the microchip, but radially outward of the plurality of static interfaces. The microchip is configured to be flip chip mounted.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: March 10, 2020
    Assignee: Anokiwave, Inc.
    Inventors: Vipul Jain, Noyan Kinayman, Robert J. McMorrow, Kristian N. Madsen, Shamsun Nahar, Nitin Jain