Patents Assigned to Archimedes Technology Group, Inc.
  • Patent number: 6883729
    Abstract: A nebulizer for atomizing a high-temperature liquid includes a truncated, conical concentrator that defines a vertex and that has a small-diameter end and a large-diameter end. The small-diameter end has a spherical-shaped, concave surface and the large-diameter end has a spherical-shaped, convex surface. A piezoelectric transducer has a spherical-shaped, concave surface that is attached to the convex surface of the concentrator. A cylindrical-shaped droplet manifold is positioned over the small-diameter end of the concentrator to create a liquid chamber in the manifold with the vertex inside the liquid chamber. A feeding tube introduces the high-temperature liquid into the liquid chamber until the surface of the liquid reaches the vertex. With an activation of the transducer, acoustic waves that have spherical wavefronts are launched away from the concave surface of the transducer. The concentrator propagates and directs the spherical wavefronts for convergence at the vertex to nebulize the liquid.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: April 26, 2005
    Assignee: Archimedes Technology Group, Inc.
    Inventors: Sergei Putvinski, Boris V. Kuteev
  • Patent number: 6797176
    Abstract: A device for separating high mass to charge particles (M1) from low mass to charge particles (M2) in a plasma includes a cylindrical wall that surrounds a chamber and defines an axis. Rectangular shaped coils are mounted on the wall to establish a magnetic field, B0, in the chamber that is aligned substantially perpendicular to the axis and which rotates about the axis. Circularly shaped coils are provided to generate a time-constant, axially aligned magnetic field, Bz, in the chamber. Passive, ring-shaped electrodes are positioned at the ends of the wall and connected to resistors which are then grounded. The rotating magnetic field, B0, rotates the plasma in the axially aligned magnetic field, Bz, which in turn, induces a radially oriented electric field, Er, in the chamber. The crossed fields (i.e. Er×Bz) cause the particles, M1, to strike the wall while the particles, M2, transit through the chamber.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: September 28, 2004
    Assignee: Archimedes Technology Group, Inc.
    Inventor: Tihiro Ohkawa
  • Patent number: 6787044
    Abstract: A material separator includes a chamber and electrode(s) to create a radially oriented electric field in the chamber. Coils are provided to generate a magnetic field in the chamber. The separator further includes a launcher to propagate a high-frequency electromagnetic wave into the chamber to convert the material into a multi-species plasma. With the crossed electric and magnetic fields, low mass ions in the multi-species plasma are placed on small orbit trajectories and exit through the end of the chamber while high mass ions are placed on large orbit trajectories for capture at the wall of the chamber.
    Type: Grant
    Filed: March 10, 2003
    Date of Patent: September 7, 2004
    Assignee: Archimedes Technology Group, Inc.
    Inventors: Richard L. Freeman, Robert L. Miller, John Gilleland, Tihiro Ohkawa
  • Patent number: 6773558
    Abstract: A fluorine generator includes a vacuum chamber filled with a working gas. An r-f antenna is positioned outside the chamber across a dielectric window from a potassium fluoride (KF) source located in the chamber. The r-f antenna radiates through the window to heat the working gas and sublime the PK source to create a plasma. Crossed electric and magnetic fields in the chamber drive the heavier potassium ions in the plasma toward a collector in the chamber while confining the lighter fluorine and working gas ions for evacuation from the chamber.
    Type: Grant
    Filed: October 15, 2002
    Date of Patent: August 10, 2004
    Assignee: Archimedes Technology Group, Inc.
    Inventors: Stephen F. Agnew, Sergei Putvinski
  • Patent number: 6733678
    Abstract: An apparatus for removing selected metal ions from a plasma includes a plasma chamber and at least one silica substrate mounted inside the chamber. More specifically, the substrate is exposed in the chamber so that when metal ions from the plasma contact the substrate they diffuse into the substrate to create a liquified layer. A receptacle is also provided to receive the liquid from the layer as it flows from the substrate.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: May 11, 2004
    Assignee: Archimedes Technology Group, Inc.
    Inventor: Tihiro Ohkawa
  • Patent number: 6730231
    Abstract: A device for separating the constituents of a multi-constituent material includes a substantially cylindrical plasma chamber and two, axially opposed plasma injectors. The injectors convert the multi-constituent material into a multi-species plasma and inject the multi-species plasma into a core portion of the plasma chamber. Ions in the plasma diffuse from the core portion to an annular volume within the chamber where the ions are separated according to their respective mass to charge ratios. To effect separation, electrodes and coils are provided to establish crossed electric and magnetic fields in the annular volume. With the crossed electric and magnetic fields, low-mass ions in the annular volume are placed on small orbit trajectories and drift axially for capture at the ends of the plasma chamber. High-mass ions in the annular volume are placed on large orbit trajectories for capture at the cylindrical wall of the chamber.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: May 4, 2004
    Assignee: Archimedes Technology Group, Inc.
    Inventor: Sergei Putvinski
  • Patent number: 6726844
    Abstract: An isotope separator includes a cylindrical chamber having first and second ends, and a length “L.” Inside the chamber, an E×B field is applied to produce plasma rotation. The energy in the plasma rotation is chosen to be much higher than the electron temperature which is clamped by radiation. As the plasma then transits the chamber through the length “L”, the electrons cool the thermal temperature of the isotope ions while maintaining the rotation. Under these conditions, the minority and majority isotopes become substantially separated from each other before they exit the chamber. To achieve this result, E×B is determined using mathematically derived expressions and, in compliance with these parameters, the length “L” of the chamber is determined so that the plasma residence time in the chamber, &tgr;1, will be greater than the cooling time, &tgr;2 (&tgr;1>&tgr;2) necessary to affect isotope separation.
    Type: Grant
    Filed: June 12, 2002
    Date of Patent: April 27, 2004
    Assignee: Archimedes Technology Group, Inc.
    Inventors: Tihiro Ohkawa, Robert L. Miller
  • Patent number: 6723248
    Abstract: A high throughput plasma mass filter includes a substantially cylindrical shaped plasma chamber with structures for generating a magnetic field (B) that is crossed with an electric field (E) in the chamber (E×B). An injector introduces into the chamber a multi-species plasma having ions of different mass to charge ratios. To obtain high throughput (&Ggr;), the initial density of this multi-species plasma is considerably greater than a collisional density wherein there is a probability of “one” that an ion collision will occur within a single rotation of the ion under the influence of E×B. The length of the chamber is chosen to insure heavy ions can make their way to the wall before transiting the device.
    Type: Grant
    Filed: August 16, 2002
    Date of Patent: April 20, 2004
    Assignee: Archimedes Technology Group, Inc.
    Inventor: Tihiro Ohkawa
  • Patent number: 6719909
    Abstract: A device and method for selectively establishing predetermined orbits, relative to an axis, for ions of a first mass/charge ratio (m1), requires crossing an electric field with a substantially uniform magnetic field (E×B). The magnetic field is oriented along the axis and the electric field has both a d.c. voltage component (∇&PHgr;0) and an a.c. voltage component (∇&PHgr;1). In operation, voltage &PHgr;0 is fixed to place the ions m1 on confined orbits around the axis when &PHgr;1 is zero. On the other hand, when &PHgr;1 is tuned to a predetermined value, the ions m1 are ejected away from the axis. With E×B established in a chamber, the ions m1 will pass through the chamber when on confined orbits (&PHgr;1=0), and they will be ejected into the wall of the chamber when on unconfined orbits (&PHgr;1=predetermined value).
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: April 13, 2004
    Assignee: Archimedes Technology Group, Inc.
    Inventor: Tihiro Ohkawa
  • Patent number: 6639222
    Abstract: A device for separating a chemical mixture into its constituents includes a central cathode that is aligned axially within a cylindrical plasma chamber. An anode, made of the chemical mixture requiring separation is positioned near the cylindrical wall of the plasma chamber. A working gas is introduced into the chamber to sputter the chemical mixture into the plasma chamber where it is dissociated and ionized. To reduce the unwanted loss of the central cathode due to sputtering by the working gas, the central cathode is formed with a plurality of radial projections that extend outwardly from the axis of the cylindrical plasma chamber. These radial projections act to capture sputtered cathode material before it is lost to the plasma. Once the chemical mixture has been ionized in the plasma chamber, the ions are separated, according to their respective mass to charge ratio, using crossed electric and magnetic fields.
    Type: Grant
    Filed: November 15, 2001
    Date of Patent: October 28, 2003
    Assignee: Archimedes Technology Group, Inc.
    Inventors: Sergei Putvinski, Vadim Volosov
  • Patent number: 6632369
    Abstract: A collector for use in removing metal ions from a plasma in a vacuum chamber includes a collector plate that is mounted inside the chamber and formed with an internal cooling channel. An injector introduces a dissociated salt into the chamber with a first throughput value, and it introduces a plasma including metal ions into the chamber with a lower second throughput value. A pump is used to pump a liquid coolant through the cooling channel to maintain the collector plate at a temperature that forms a portion of the salt as a protective layer on the collector plate, and causes the salt to thereafter deposit on the layer in a molten condition at a faster rate than evaporation therefrom to trap metal ions therein. The trapped metal ions are then removed with the molten salt from the chamber.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: October 14, 2003
    Assignee: Archimedes Technology Group, Inc.
    Inventors: Brian P. Cluggish, Stephen F. Agnew, Sergei Putvinski
  • Patent number: 6624380
    Abstract: A device and method for producing sodium (Na) from a feed material such as a mixture of methane (CH4) and sodium hydroxide (NaOH) includes a plasma torch configured to heat the feed material to a temperature sufficient to reduce and ionize sodium (Na). As such, a plasma jet is created by the plasma torch that contains ionized sodium (Na) and non-ionized neutrals such as hydrogen (H) and carbon monoxide (CO). From the plasma torch, the plasma jet is introduced into a chamber where a magnetic field has been established. Once inside the chamber the heated mixture of ions and neutrals interacts with the magnetic field in the chamber to cause the sodium ions to travel substantially along the magnetic field lines while the neutrals travel on paths that are essentially unaffected by the magnetic field. A collector is positioned to receive and accumulate sodium (Na).
    Type: Grant
    Filed: July 10, 2001
    Date of Patent: September 23, 2003
    Assignee: Archimedes Technology Group, Inc.
    Inventors: Stephen F. Agnew, Sergei Putvinski
  • Patent number: 6585891
    Abstract: A device for separating high-mass ions (having cyclotron frequency &OHgr;h) from low-mass ions (having cyclotron frequency &OHgr;l) in a plasma includes a chamber. Coils are provided to generate a substantially uniform magnetic field in the chamber. An antenna is provided to launch a left-hand elliptically polarized electromagnetic wave into the chamber along the stationary magnetic field that is evanescent in the multi-species plasma. Importantly, the E vector of the elliptically polarized electromagnetic wave rotates at a frequency, &ohgr;, where &OHgr;h<&ohgr;<&OHgr;l. Ponderomotive forces are generated by the electromagnetic wave that cause the low-mass ions to move toward the antenna while causing the high-mass ions to move away from the antenna.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: July 1, 2003
    Assignee: Archimedes Technology Group, Inc.
    Inventor: Tihiro Ohkawa
  • Patent number: 6576127
    Abstract: A plasma mass filter having features to prevent plasma loss through one end of the filter and thereby increase energy efficiency includes a cylindrical wave guide to surround a plasma. Coil(s) and electrode(s) are provided to establish crossed electric and magnetic fields within the wave guide to separate plasma ions according to their mass. A circularly polarized electromagnetic wave having specific characteristics is launched through a first end of the wave guide and into the plasma to generate ponderomotive forces on the plasma particles via photon reflection. These forces cause the plasma particles to move towards the second end of the wave guide and thus prevent plasma loss through the first end of the wave guide. This structure allows feed plasma to be continuously introduced into the first end of the wave guide for separation therein. A resonance cavity is provided to redirect the reflected photons back into the plasma.
    Type: Grant
    Filed: February 28, 2002
    Date of Patent: June 10, 2003
    Assignee: Archimedes Technology Group, Inc.
    Inventor: Tihiro Ohkawa
  • Patent number: 6541764
    Abstract: A plasma mass filter for separating low-mass particles from high-mass particles in a multi-species plasma includes a substantially cylindrically shaped barrier surrounding a chamber and defining a longitudinal axis. Helically shaped coils are mounted on the barrier to establish a magnetic field in the chamber. Conducting rings are provided to establish a radially directed electric field in the chamber. The plasma is injected into the chamber for interaction with the electric and magnetic fields, placing the high-mass particles onto trajectories rotating about a guiding center that travels within a surface having a hyperbolic shape. The low-mass particles are placed onto trajectories rotating about a guiding center that travels within a surface having an elliptical shape. The fields create an axial force directing the particles away from the injection point. As such, the high-mass particles strike the inner wall of the barrier, while the low-mass particles transit through the chamber.
    Type: Grant
    Filed: March 21, 2001
    Date of Patent: April 1, 2003
    Assignee: Archimedes Technology Group, Inc.
    Inventor: Tihiro Ohkawa
  • Patent number: 6521888
    Abstract: An inverted orbit mass filter includes a cylindrical container located at a radial distance (rout) from its longitudinal axis, and a cylindrical collector located at a radial distance (rcoll) from the axis and coaxially positioned in the container to establish a plasma chamber therebetween. A uniform magnetic field is axially aligned in the chamber and an inwardly directed radial electric field is crossed with the magnetic field. A multi-species plasma including both low mass charged particles (M1) and high mass charged particles (M2) is injected into the chamber between the container (rout) and a radial distance (rin) from the axis. In their relationship to each other: rout>rin>rcoll. Inside the chamber the multi-species plasma has a low collisional density wherein there is a very low probability of particle collision.
    Type: Grant
    Filed: January 20, 2000
    Date of Patent: February 18, 2003
    Assignee: Archimedes Technology Group, Inc.
    Inventor: Arthur Carlson
  • Patent number: 6521210
    Abstract: In accordance with the present invention, a method for imaging a malignancy in a patient, in situ, requires feeding the patient a nutrient that is enriched with carbon 13 (13C). This feeding step can be accomplished either orally or intravenously, and can last for approximately 24 hours. Magnetic Resonance Imaging (MRI) techniques are then used on the patient with rf energy that is tuned to the nuclear resonance of 13C. An image of selected tissue in the patient is thereby created, and this image is thereafter evaluated for any concentrations of 13C that will delineate a malignancy. If present, the malignancy can then be treated. A subsequent (feeding)/(MRI imaging) procedure may be performed. The image that is created in this subsequent procedure can then be compared with the image that was created in the first procedure to determine the efficacy of the treatment, or to determine a growth rate for the malignancy.
    Type: Grant
    Filed: December 13, 2000
    Date of Patent: February 18, 2003
    Assignee: Archimedes Technology Group, Inc.
    Inventor: Tihiro Ohkawa
  • Patent number: 6515281
    Abstract: A stochastic cyclotron ion filter for separating ions in a multi-species plasma according to mass uses an electrical field (E) crossed with a magnetic field (B). In particular, the electric field is stochastically generated by an amplified noise source with a band pass filter that passes only frequencies in an interval between &ohgr;1 and &ohgr;2. The filter also includes a cylindrical chamber for receiving the multi-species plasma, and coils are used to generate the magnetic field inside the chamber. In operation, the stochastically generated electric field resonates with particles in the plasma that have a cyclotron frequency &OHgr; in the frequency interval (&ohgr;1<&OHgr;<&ohgr;2). In one embodiment, an electrode is mounted at one end of the chamber, and the electrode is connected with the amplifier to establish the electrical field in the chamber.
    Type: Grant
    Filed: June 23, 2000
    Date of Patent: February 4, 2003
    Assignee: Archimedes Technology Group, Inc.
    Inventor: Tihiro Ohkawa
  • Patent number: 6410880
    Abstract: A plasma torch for vaporizing a molten salt containing a volatile component and a refractory component injects the molten salt into a device that includes a cylindrical shaped outer member and a cylindrical shaped inner member coaxially positioned inside the outer member to surround a chamber. An induction coil positioned between the inner and outer members generates r.f. power which is initially used to vaporize the volatile component of the molten salt to create a carrier gas having an elevated temperature. The carrier gas then heats the refractory component, under an increased vapor pressure from the carrier gas. This action, in turn, breaks down the refractory component of the molten salt into fine droplets. These fine droplets are maintained in the chamber until they also vaporize. In one embodiment, the plasma torch includes a nozzle for spraying droplets of the molten salt into said chamber.
    Type: Grant
    Filed: January 10, 2000
    Date of Patent: June 25, 2002
    Assignee: Archimedes Technology Group, Inc.
    Inventors: Sergei Putvinski, Stephen F. Agnew, Tihiro Ohkawa, Leigh Sevier
  • Patent number: 6403954
    Abstract: A linear plasma mass filter includes a container which is shaped as a rectangular prism. Magnetic coils encircle the container for generating a uniform magnetic field (B) in the container, and electrodes are mounted on the container for generating an electric field (E) in the container. Specifically, the electric field is rectilinear in that all of the electric field lines are parallel to each other. Further, the electric field is oriented perpendicular to the magnetic field to create crossed electric and magnetic fields (E×B). A plasma source is provided for injecting a multi-species plasma into the container which includes relatively low mass particles (M1), and relatively high mass particles (M2). Both M1 and M2 are responsive to the magnetic field with respective cyclotron orbits of a first diameter (D1) and a second diameter (D2).
    Type: Grant
    Filed: December 8, 1999
    Date of Patent: June 11, 2002
    Assignee: Archimedes Technology Group, Inc.
    Inventor: Arthur Carlson