Patents Assigned to CARBO Ceramics Inc.
  • Patent number: 10106727
    Abstract: Proppant compositions for use in hydraulic fracturing and methods of using same are disclosed herein. The proppant compositions include a plurality of proppant particulates and at least one particulate of the plurality of proppant particulates containing at least one tracer, wherein the at least one tracer separates from the at least one particulate located inside a fracture of a subterranean formation after a period of time.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: October 23, 2018
    Assignees: National Technology & Engineering Solutions of Sandia, LLC, CARBO Ceramics Inc., STC.UNM
    Inventors: Chad Cannan, Terrence Palisch, Richard A. Kemp, Timothy J. Boyle, Bernadette A. Hernandez-Sanchez, James E. Miller
  • Patent number: 10106732
    Abstract: Electrically conductive proppant particles having non-uniform electrically conductive coatings are disclosed. The non-uniform electrically conductive coatings can have a thickness of at least about 10 nm formed on an outer surface of a sintered, substantially round and spherical particle, wherein less than 95% of the outer surface of the sintered, substantially round and spherical particle is coated with the electrically conductive material. Methods for making and using such electrically conductive proppant particles having non-uniform electrically conductive coatings are also disclosed.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: October 23, 2018
    Assignee: CARBO CERAMICS INC.
    Inventors: Chad Cannan, Lewis Bartel, Todd Roper
  • Patent number: 10107523
    Abstract: Ceramic particles for use in a solar power tower and methods for making and using the ceramic particles are disclosed. The ceramic particle can include a sintered ceramic material formed from a mixture of a ceramic raw material and a darkening component comprising MnO as Mn2+. The ceramic particle can have a size from about 8 mesh to about 170 mesh and a density of less than 4 g/cc.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: October 23, 2018
    Assignee: CARBO CERAMICS INC.
    Inventors: Claude Krause, Benjamin Eldred, Steve Canova
  • Patent number: 10077398
    Abstract: A method for making proppant particles is provided. The method can include providing a slurry of ceramic raw material, the slurry containing a reactant including a polycarboxylic acid, and flowing the slurry through a nozzle in a gas while vibrating the slurry to form droplets. The method can also include receiving the droplets in a vessel containing a liquid having an upper surface in direct contact with the gas, the liquid containing a coagulation agent. The method can further include reacting the reactant with the coagulation agent to cause coagulation of the reactant in the droplets. The droplets can then be transferred from the liquid and dried to form green pellets. The method can include sintering the green pellets in a selected temperature range to form the proppant particles. In one or more exemplary embodiments, the reactant can be or include a PMA:PAA copolymer.
    Type: Grant
    Filed: March 10, 2016
    Date of Patent: September 18, 2018
    Assignee: CARBO Ceramics Inc.
    Inventors: Benjamin T. Eldred, Brett A. Wilson, Clayton F. Gardinier, Robert Duenckel, Todd Roper
  • Patent number: 10077645
    Abstract: Methods of hydraulically fracturing a subterranean formation to improve the production rates and ultimate recovery by contacting unconsolidated resin-coated proppant particulates residing in a propped fracture with a reactive crosslinker in order to form a consolidated proppant pack. Methods for using proppant surface chemistry in water injection wells to consolidate the resin-coated proppant particulates in a gravel packed or frac packed region of a wellbore.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: September 18, 2018
    Assignee: CARBO CERAMICS INC.
    Inventors: Chad Cannan, Thu Lieng, Daryl Erwin Johnson, Mark Conner
  • Patent number: 10077395
    Abstract: Proppant particles formed from slurry droplets and methods of use are disclosed herein. The proppant particles can include a sintered ceramic material and can have a size of about 80 mesh to about 10 mesh and an average largest pore size of less than about 20 microns. The methods of use can include injecting a hydraulic fluid into a subterranean formation at a rate and pressure sufficient to open a fracture therein and injecting a fluid containing a proppant particle into the fracture, the proppant particle including a sintered ceramic material, a size of about 80 mesh to about 10 mesh, and an average largest pore size of less than about 20 microns.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: September 18, 2018
    Assignee: CARBO Ceramics Inc.
    Inventors: Benjamin T. Eldred, Brett A. Wilson, Clayton F. Gardinier, Robert Duenckel
  • Patent number: 10035950
    Abstract: Compositions and methods for improving proppant conductivity are disclosed herein. The compositions can include a proppant composition for use in hydraulic fracturing, the composition containing a plurality of particulates. At least one particulate of the plurality of particulates can contain at least one nutrient. The at least one nutrient can separate from the at least one particulate located inside a fracture of a subterranean formation after a period of time.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: July 31, 2018
    Assignee: CARBO CERAMICS, INC.
    Inventors: Lyle Lehman, Chad Cannan
  • Patent number: 9994764
    Abstract: Methods and systems for infusing ceramic proppant and infused ceramic proppant obtained therefrom are provided. The method can include introducing ceramic proppant and a chemical treatment agent to a mixing vessel, mixing the ceramic proppant and the chemical treatment agent in the mixing vessel to provide a mixture, introducing microwave energy to the mixing vessel to heat the mixture to a temperature sufficient to produce infused ceramic proppant containing at least a portion of the chemical treatment agent, and withdrawing the infused ceramic proppant from the mixing vessel.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: June 12, 2018
    Assignee: CARBO CERAMICS INC.
    Inventors: Steven C. Howe, Chad Cannan, Todd Roper
  • Patent number: 9951267
    Abstract: Proppant compositions and methods for using same are disclosed herein. In particular, a proppant composition for use in hydraulic fracturing is disclosed herein. The proppant composition can contain a plurality of particulates and at least one particulate of the plurality of particulates containing a chemical treatment agent. The at least one particulate having a long term permeability measured in accordance with ISO 13503-5 at 7,500 psi of at least about 10 D. The at least one chemical treatment agent can separate from the at least one particulate when located inside a fracture of a subterranean formation after a period of time.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: April 24, 2018
    Assignee: CARBO CERAMICS INC.
    Inventors: Robert Duenckel, Mark Conner, Chad Cannan, Todd Roper, Joshua Leasure, Thu Lieng, Daniel Cady, Peter A. Read
  • Patent number: 9927549
    Abstract: Born Scattering Inversion (BSI) systems and methods are disclosed. A BSI system may be incorporated in a well system for accessing natural gas, oil and geothermal reserves in a geologic formation beneath the surface of the Earth. The BSI system may be used to generate a three-dimensional image of a proppant-filled hydraulically-induced fracture in the geologic formation. The BSI system may include computing equipment and sensors for measuring electromagnetic fields in the vicinity of the fracture before and after the fracture is generated, adjusting the parameters of a first Born approximation model of a scattered component of the surface electromagnetic fields using the measured electromagnetic fields, and generating the image of the proppant-filled fracture using the adjusted parameters.
    Type: Grant
    Filed: July 3, 2014
    Date of Patent: March 27, 2018
    Assignees: CARBO Ceramics Inc., Sandia Corporation
    Inventors: David F. Aldridge, Lewis C. Bartel
  • Patent number: 9670400
    Abstract: Proppant particles formed from slurry droplets and methods of use are disclosed herein. The proppant particles can include a sintered ceramic material and can have a size of about 80 mesh to about 10 mesh and an average largest pore size of less than about 20 microns. The methods of use can include injecting a hydraulic fluid into a subterranean formation at a rate and pressure sufficient to open a fracture therein and injecting a fluid containing a proppant particle into the fracture, the proppant particle including a sintered ceramic material, a size of about 80 mesh to about 10 mesh, and an average largest pore size of less than about 20 microns.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: June 6, 2017
    Assignee: CARBO CERAMICS INC.
    Inventors: Benjamin T. Eldred, Brett A. Wilson, Clayton F. Gardinier, Robert Duenckel
  • Patent number: 9670401
    Abstract: Methods for producing solid, substantially round, spherical and sintered particles from a slurry of a raw material having an alumina content of greater than about 40 weight percent. The slurry is processed to prepare green pellets which are sintered in a furnace with microwave energy at a temperature of 1480 to 1520° C. to produce solid, substantially round, spherical and sintered particles having an average particle size greater than about 200 microns, a bulk density of greater than about 1.35 g/cm3, and an apparent specific gravity of greater than about 2.60.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: June 6, 2017
    Assignee: CARBO CERAMICS INC.
    Inventors: Chad Cannan, Brett A. Wilson, Benjamin T. Eldred
  • Patent number: 9551210
    Abstract: Systems and methods for generating a three-dimensional image of a proppant-filled hydraulically-induced fracture in a geologic formation are provided. The image may be generated by capturing electromagnetic fields generated or scattered by the proppant-filled fracture, removing dispersion and/or an attenuation effects from the captured electromagnetic fields, and generating the image based on the dispersion and/or attenuation corrected fields. Removing the dispersion and/or attenuation effects may include back propagating the captured electromagnetic fields in the time domain to a source location. The image may be generated based on locations at which the back propagated fields constructively interfere or may be generated based on a model of the fracture defined using the back propagated fields.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: January 24, 2017
    Assignee: CARBO CERAMICS INC.
    Inventor: Lewis Bartel
  • Patent number: 9434875
    Abstract: Electrically-conductive sintered, substantially round and spherical particles and methods for producing such electrically-conductive sintered, substantially round and spherical particles from an alumina-containing raw material. Methods for using such electrically-conductive sintered, substantially round and spherical particles in hydraulic fracturing operations.
    Type: Grant
    Filed: December 16, 2014
    Date of Patent: September 6, 2016
    Assignee: CARBO CERAMICS INC.
    Inventors: Chad Cannan, Todd Roper, Steve Savoy, Daniel R. Mitchell
  • Publication number: 20160075941
    Abstract: Proppant compositions and methods for using same are disclosed herein. In particular, a proppant composition for use in hydraulic fracturing is disclosed herein. The proppant composition can contain a plurality of particulates and at least one particulate of the plurality of particulates containing a chemical treatment agent. The at least one particulate having a long term permeability measured in accordance with ISO 13503-5 at 7,500 psi of at least about 10 D. The at least one chemical treatment agent can separate from the at least one particulate when located inside a fracture of a subterranean formation after a period of time.
    Type: Application
    Filed: September 17, 2015
    Publication date: March 17, 2016
    Applicant: CARBO CERAMICS INC.
    Inventors: Robert Duenckel, Mark Conner, Chad Cannan, Todd Roper, Joshua Leasure, Thu Lieng, Daniel Cady, Peter A. Read
  • Patent number: 9262713
    Abstract: Methods and systems for optimizing wellbore completion and, in particular, methods and systems for optimizing hydraulic fracturing parameters are disclosed. In some embodiments, a method of optimizing wellbore completion includes gathering wellbore data, screening and processing the gathered wellbore data, utilizing the screened and processed wellbore data to define an optimized model, and utilizing the optimized model to evaluate combinations of available wellbore completion parameters. In some instances, the optimized model is defined using artificial neural networks, genetic algorithms, and/or boosted regression trees. Further, in some embodiments the combinations of available wellbore completion parameters include hydraulic fracturing parameters, such as number of fractures, fracturing fluid type, proppant type, fracturing volume, and/or other parameters.
    Type: Grant
    Filed: September 5, 2012
    Date of Patent: February 16, 2016
    Assignee: CARBO Ceramics Inc.
    Inventors: Robert Shelley, Nijat Guliyev, Amir Nejad
  • Patent number: 9250351
    Abstract: Born Scattering Inversion (BSI) systems and methods are disclosed. A BSI system may be incorporated in a well system for accessing natural gas, oil and geothermal reserves in a geologic formation beneath the surface of the Earth. The BSI system may be used to generate a three-dimensional image of a proppant-filled hydraulically-induced fracture in the geologic formation. The BSI system may include computing equipment and sensors for measuring electromagnetic fields in the vicinity of the fracture before and after the fracture is generated, adjusting the parameters of a first Born approximation model of a scattered component of the surface electromagnetic fields using the measured electromagnetic fields, and generating the image of the proppant-filled fracture using the adjusted parameters.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: February 2, 2016
    Assignee: CARBO Ceramics Inc.
    Inventors: David F. Aldridge, Lewis C. Bartel
  • Patent number: 9175210
    Abstract: Proppant material for hydraulic fracturing is provided. The particles of the proppant are formed by drip casting. A slurry of finely divided ceramic particles is flowed through nozzles and formed into droplets under the influence of vibration. Uniform sized, smooth surface, spherical green particles are formed. The green particles are dried and sintered to form the proppant. The proppant is used in the process of hydraulic fracturing of wells.
    Type: Grant
    Filed: March 11, 2011
    Date of Patent: November 3, 2015
    Assignee: CARBO Ceramics Inc.
    Inventors: Benjamin T. Eldred, Brett A. Wilson, Clayton F. Gardinier, Robert J. Duenckel
  • Patent number: 8931553
    Abstract: Electrically conductive proppants and methods for detecting, locating, and characterizing same are provided. The electrically conductive proppant can include a substantially uniform coating of an electrically conductive material having a thickness of at least 500 nm. The method can include injecting a hydraulic fluid into a wellbore extending into a subterranean formation at a rate and pressure sufficient to open a fracture therein, injecting into the fracture a fluid containing the electrically conductive proppant, electrically energizing the earth at or near the fracture, and measuring three dimensional (x, y, and z) components of electric and magnetic field responses at a surface of the earth or in an adjacent wellbore.
    Type: Grant
    Filed: January 3, 2014
    Date of Patent: January 13, 2015
    Assignees: CARBO Ceramics Inc., Sandia Coporation
    Inventors: Chad Cannan, Lewis Bartel, Terrence Palisch, David Aldridge
  • Patent number: 8883693
    Abstract: Proppant material for hydraulic fracturing is provided. The particles of the proppant are formed by drip casting. A slurry of finely divided ceramic particles is flowed through nozzles and formed into droplets under the influence of vibration. Uniform sized, smooth surface, spherical green particles are formed. The green particles are dried and sintered to form the proppant. The proppant is used in the process of hydraulic fracturing of wells.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: November 11, 2014
    Assignee: Carbo Ceramics, Inc.
    Inventors: Benjamin T. Eldred, Brett A. Wilson, Clayton F. Gardinier, Robert J. Duenckel