Patents Assigned to Carl Zeiss SMT GmbH
  • Patent number: 11366393
    Abstract: An optical arrangement of an imaging device for microlithography, particularly for using light in the extreme UV range, includes an optical element and a holding device for holding the optical element. The optical element includes an optical surface and defines a plane of main extension, in which the optical element defines a radial direction and a circumferential direction. The holding device includes a base element and more than three separate holding units. The holding units are connected to the base element and arranged in a manner distributed along the circumferential direction and spaced apart from one another. The holding units hold the optical element with respect to the base element. Each of the holding units establishes a clamping connection between the optical element and the base element. The clamping connection for each holding unit is separate from the clamping connections of the other holding units.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: June 21, 2022
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Eugen Anselm, Karl Fenkl, Christoph Müller, Ralf Moser
  • Patent number: 11366395
    Abstract: A mirror that has a mirror substrate (12), a reflection layer stack (21) reflecting electromagnetic radiation incident on the optical effective surface (11), and at least one piezoelectric layer (16) arranged between the mirror substrate and the reflection layer stack and to which an electric field for producing a locally variable deformation is applied by way of a first electrode arrangement and a second electrode arrangement situated on alternate sides of the piezoelectric layer. In one aspect, both the first and the second electrode arrangements have a plurality of electrodes (20a, 20b), to each of which an electrical voltage relative to the respective other electrode arrangement can be applied via leads (19a, 19b). Separate mediator layers (17a, 17b) set continuous electrical potential profiles along the respective electrode arrangement, and where said mediator layers differ from one another in their average electrical resistance by a factor of at least 1.5.
    Type: Grant
    Filed: November 8, 2020
    Date of Patent: June 21, 2022
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Kerstin Hild, Toralf Gruner, Vitaliy Shklover
  • Patent number: 11360393
    Abstract: A mirror having a mirror substrate (12, 32, 52), a reflection layer stack (21, 41, 61) reflecting electromagnetic radiation having an operating wavelength that is incident on the optical effective surface (11, 31, 51), and at least one piezoelectric layer (16, 36, 56), arranged between the substrate and the reflection layer stack and to which an electric field producing a locally variable deformation is applied. A first electrode arrangement (20, 40, 60) situated on the side of the piezoelectric layer faces the reflection layer stack, and a second electrode arrangement (14, 34, 54) is situated on the side of the piezoelectric layer facing the mirror substrate. Optionally, a bracing layer (98) is provided, which limits sinking of the piezoelectric layer (96) into the mirror substrate (92) when an electric field is applied, in comparison with an analogous construction lacking the bracing layer, thereby increasing the piezoelectric layer's effective deflection.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: June 14, 2022
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Ben Wylie-Van Eerd, Frederik Bijkerk, Kerstin Hild, Toralf Gruner, Stefan Schulte, Simone Weyler
  • Patent number: 11360293
    Abstract: A catadioptric projection lens images a pattern of a mask in an effective object field of the projection lens into an effective image field of the projection lens with electromagnetic radiation with an operating wavelength ?<260 nm. The projection lens includes a multiplicity of lens elements and a multiplicity of mirrors including at least one concave mirror. The lens elements and mirrors define a projection beam path that extends from the object plane to the image plane and contains at least one pupil plane. The mirrors include a first mirror having a first mirror surface in the projection beam path between the object and pupil planes in the optical vicinity of a first field plane optically conjugate to the object plane. The mirrors also include a second mirror having a second mirror surface in the projection beam path between the pupil and image planes in the optical vicinity of a second field plane that is optically conjugate to the first field plane.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: June 14, 2022
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Martin Rocktaeschel, Michael Grupp, Hendrik Wagner
  • Patent number: 11355311
    Abstract: The present application relates to a method and an apparatus for determining a wavefront of a massive particle beam, including the steps of: (a) recording two or more images of a reference structure using the massive particle beam under different recording conditions; (b) generating point spread functions for the two or more recorded images with a modified reference image of the reference structure; and (c) performing a phase reconstruction of the massive particle beam on the basis of the generated point spread functions and the different recording conditions, for the purposes of determining the wavefront.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: June 7, 2022
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Joachim Welte, Markus Bauer
  • Patent number: 11353478
    Abstract: The present invention relates to methods and devices for extending a time period until changing a measuring tip of a scanning probe microscope. In particular, the invention relates to a method for hardening a measuring tip for a scanning probe microscope, comprising the step of: Processing the measuring tip with a beam of an energy beam source, the energy beam source being part of a scanning electron microscope.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: June 7, 2022
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Gabriel Baralia, Rainer Becker, Kinga Kornilov, Christof Baur, Hans Hermann Pieper
  • Patent number: 11350513
    Abstract: A stop is configured to be arranged in a constriction of an EUV illumination light beam between an EUV light source for EUV illumination light and an EUV illumination optical unit. The stop has a beam entrance section, a beam exit section and an intervening beam tube section. The entrance section has a cross section that decreases in the propagation direction of the EUV illumination light beam. The cross section of the exit section increases in the propagation direction. The cross section of the tube section is constant. An inner wall of the beam tube section is embodied as reflective for the EUV illumination light. The result is a stop that can have a defined predetermination of the illumination light beam in conjunction with a good thermal loading capacity of the stop.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: May 31, 2022
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Michael Patra
  • Patent number: 11326872
    Abstract: A method and a device for characterizing the surface shape of an optical element. In the method, in at least one interferogram measurement carried out by an interferometric test arrangement, a test wave reflected at the optical element is caused to be superimposed with a reference wave not reflected at the optical element. In this case, the figure of the optical element is determined on the basis of at least two interferogram measurements using electromagnetic radiation having in each case linear input polarization or in each case circular input polarization, wherein the input polarizations for the two interferogram measurements differ from one another.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: May 10, 2022
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Steffen Siegler, Thomas Schicketanz
  • Patent number: 11328831
    Abstract: Treating a reflective optical element (104) for the EUV wavelength range that has a reflective coating on a substrate. The reflective optical element in a holder (106) is irradiated with at least one radiation pulse of a radiation source (102) having a duration of between 1 ?s and 1 s. At least one radiation source (102) and the reflective optical element move relative to one another. Preferably, this is carried out directly after applying the reflective coating in a coating chamber (100). Reflective optical elements of this type are suitable in particular for use in EUV lithography or in EUV inspection of masks or wafers, for example.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: May 10, 2022
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Christian Grasse, Martin Hermann, Stephan Six, Joern Weber, Ralf Winter, Oliver Dier, Vitaliy Shklover, Kerstin Hild, Sebastian Strobel
  • Patent number: 11327403
    Abstract: An illumination optical system for projection lithography includes a pupil facet mirror having pupil facets. For at least some of the pupil facets which are designed as selectively reflecting pupil facets, the selectively reflecting pupil facet has a reflective coating for the illumination light, wherein a first coating area on a first part of the selectively reflecting pupil facet has a first reflectivity, a second coating area on a second part of the selectively reflecting pupil facet has a second reflectivity, the first coating area is different from the second coating area, and the first reflectivity is different from the second reflectivity. In combination or as an alternative, for at least some of the pupil facets which are designed as broadbands reflecting pupil facets, the broadband reflecting facets have a broadband reflective coating for the illumination light.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: May 10, 2022
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Tian Gang, Jan Van Schoot
  • Patent number: 11320314
    Abstract: A method and an apparatus for determining the heating state of an optical element in a microlithographic optical system involves at least one contactless sensor which is based on the reception of electromagnetic radiation from the optical element. The radiation range captured by the sensor is varied for the purposes of ascertaining a temperature distribution in the optical element.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: May 3, 2022
    Assignees: Carl Zeiss SMT GmbH
    Inventors: Toralf Gruner, Joachim Hartjes, Markus Hauf, Gerhard Beurer
  • Patent number: 11320749
    Abstract: An actuator device for aligning an element includes at least one first actuator unit, which is secured to a support structure, for a first setting range and a second actuator unit, which is able to be secured to the element, for a second setting range. The second actuator unit is connected to an output element of the first actuator unit so that the positioning of the second actuator unit is adjustable by an adjustment of the output element. The first actuator unit has an adjusting element and a fixing element, which is able to be secured to the support structure. The fixing element secures the output element in a force-locking manner in an operating state of the element. The fixing element is furthermore configured to release the force-locking connection in a setting state of the element to enable an adjustment of the output element via the adjusting element.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: May 3, 2022
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Boaz Pnini
  • Patent number: 11320753
    Abstract: A projection exposure apparatus for semiconductor lithography includes at least one component which is provided with a damping arrangement for dissipating mechanical vibration energy. The damping arrangement includes a ferromagnetic element, through which a magnetic field passes at least partly. The magnetic flux density is inhomogeneous at least regionally. The ferromagnetic element is mounted in such a way that it is movable with a movement component in the direction of the inhomogeneity of the magnetic field.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: May 3, 2022
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Philipp Meinkuss
  • Patent number: 11307505
    Abstract: A method for operating an optical apparatus (100A, 100B, 200), having a structural element (201) which is arranged in a residual gas atmosphere (RGA) of the apparatus and which is formed at least partly from an element material subjected to a chemical reduction process and/or an etching process with a plasma component (PK) present in the residual gas atmosphere includes: feeding (S2) a gas component (GK) that at least partly suppresses the reduction process depending on a detected suppression extent (UM) for a suppression of the etching process and/or reduction process by the suppressing gas component in the residual gas atmosphere; and detecting (S1) the suppression extent with a sensor unit (208) arranged in the residual gas atmosphere. The sensor unit includes a sensor material section (211) composed of a sensor material and exhibiting a sensor section property that is measurable under the influence of the suppressing gas component.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: April 19, 2022
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Moritz Becker, Stefan-Wolfgang Schmidt
  • Patent number: 11307503
    Abstract: A microlithographic arrangement, for example using light in the extreme UV range, includes a supporting structure for supporting an optical unit, the mass of which can be 4 t to 14 t. The supporting structure includes a number of separate supporting units for supporting the optical unit. Each of the supporting units includes an air bearing unit by way of which a supporting force which counteracts the weight of the optical unit can be generated. The number of supporting units is at least four, at least two of the supporting units being coupled via a coupling device to form a supporting unit pair in such a way that the coupling device counteracts a deviation from a predeterminable ratio of the supporting forces of the two supporting units of the supporting unit pair.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: April 19, 2022
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Martin Vogt, Joachim Hartjes
  • Patent number: 11303092
    Abstract: An FEL includes a feedback device for feeding back emitted illumination radiation.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: April 12, 2022
    Assignee: Carl Zeiss SMT GmbH
    Inventor: Udo Dinger
  • Patent number: 11281114
    Abstract: A projection exposure apparatus for semiconductor lithography having a projection optical unit. The projection optical unit includes a sensor frame, a carrying frame, and a module. The module includes an optical element and actuators for positioning and orienting the optical element. The module is on the carrying frame, and the sensor frame is a reference for the positioning of the optical element. The module includes an infrastructure which includes interfaces for separating a module from the projection optical unit. A method exchanges the module of a projection optical unit of a projection exposure apparatus for semiconductor lithography, wherein the module includes an optical element, while the reference remains in the projection exposure apparatus.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: March 22, 2022
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Jens Kugler, Mark Feygin, Stefan Xalter, Bernhard Gellrich, Stefan Hembacher
  • Patent number: 11274914
    Abstract: A measuring assembly for the frequency-based determination of the position of a component, in particular in an optical system for microlithography, includes at least one optical resonator, which has a stationary first resonator mirror, a movable measurement target assigned to the component, and a stationary second resonator mirror. The second resonator mirror is formed by an inverting mirror (130, 330, 430, 530), which reflects back on itself a measurement beam coming from the measurement target.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: March 15, 2022
    Assignee: CARL ZEISS SMT GMBH
    Inventors: Matthias Manger, Andreas Koeniger, Alexander Vogler
  • Patent number: 11269260
    Abstract: A method includes using an illumination device to illuminate an object with electromagnetic radiation produced by a radiation source, and using a detector device to capture a respective intensity distribution in a diffraction image produced by the object in a plurality of measurement steps. The measurement steps differ from one another with respect to the illumination setting set by the illumination device. The method also includes determining at least one characteristic variable that is characteristic for the object on the basis of an iteratively performed comparison between the measurement values obtained within the scope of the measurement steps and model-based simulated values. The model-based simulated values are ascertained on the basis of a multiple layer model, in which the object is modeled by a multiple layer structure made of layers that are respectively separated from one another by an interface, wherein a location-dependent reflectivity is assigned to the interfaces.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: March 8, 2022
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Michael Carl, Martin Voelcker
  • Patent number: 11262660
    Abstract: An image sensor for a position sensor apparatus for ascertaining a position of at least one mirror of a lithography apparatus includes: a plurality of integrated optical waveguides; a plurality of incoupling areas; a multiplexer apparatus; and an image reconstruction apparatus.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: March 1, 2022
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Jan Horn, Ulrich Bihr, Andy Zott, Markus Deguenther