Patents Assigned to Catalytica
  • Patent number: 5241112
    Abstract: This invention is a process for the production of trialkyl acetic acids, particularly of pivalic acid, from branched olefins, particularly isobutene, and carbon monoxide using a solid acid catalyst and optionally with minor amounts of a Lewis acid such as boron trifluoride.
    Type: Grant
    Filed: April 9, 1991
    Date of Patent: August 31, 1993
    Assignee: Catalytica, Inc.
    Inventors: William A. Sanderson, Michael A. Richard
  • Patent number: 5233113
    Abstract: This invention is a process for converting lower alkanes into their corresponding esters and optionally into various intermediates (such as methanol) and other liquid hydrocarbons. The alkanes are oxidatively converted to oxy-esters at high selectivity using catalytic amounts of a Group VIII noble metal. If so desired, the alkyl oxy-esters may be converted to alcohols or other intermediates such as alkyl halides. The oxy-esters, alcohols, and other intermediates may optionally be converted to liquid hydrocarbons such as gasoline.
    Type: Grant
    Filed: February 15, 1991
    Date of Patent: August 3, 1993
    Assignee: Catalytica, Inc.
    Inventors: Roy A. Periana, Eric R. Evitt, Henry Taube
  • Patent number: 5233095
    Abstract: A process for the manufacture of resorcinol is described which relies upon the intermediacy of a .alpha.,.beta.-unsaturated ketone which can be reacted with a hydroxy moiety-containing compound to obtain a resorcinol precursor which is subsequently converted to resorcinol. In a specific embodiment, 2-cyclohexenone is reacted with water to obtain 3-hydroxycyclohexanone which is dehydrogenated to resorcinol. In another embodiment, 2-cyclohexenone is oxidized to cyclohexane-1,3-dione which is dehydragenated obtain resorcinol.
    Type: Grant
    Filed: July 16, 1991
    Date of Patent: August 3, 1993
    Assignee: Catalytica, Inc.
    Inventors: Jere D. Fellmann, Robert J. Saxton, Paul Tung
  • Patent number: 5232357
    Abstract: This invention is a combustion process having a series of stages in which the fuel is combusted stepwise using specific catalysts (desirably palladium-bearing catalysts in the first two zones and metal and oxygen-bearing catalysts in the hot catalytic zone) and catalytic structures and, optionally, a final homogeneous combustion zone. The choice of catalysts and the use of specific structures, including those employing integral heat exchange, results in a catalyst support which is stable due to its comparatively low temperature and yet the product combustion gas is at a temperature suitable for use in a gas turbine, furnace, boiler, or the like, but has low NO.sub.x content.
    Type: Grant
    Filed: November 26, 1990
    Date of Patent: August 3, 1993
    Assignees: Catalytica, Inc., Tanaka Kikinzoku Kogyo K.K.
    Inventors: Ralph A. Dalla Betta, Kazunori Tsurumi, Nobuyasu Ezawa
  • Patent number: 5227521
    Abstract: This invention is a process for the production of trialkyl acetic acids, particularly of pivalic acid, from branched olefins, particularly isobutene, and carbon monoxide using catalytic amounts of a Lewis acid such as boron trifluoride.
    Type: Grant
    Filed: April 9, 1991
    Date of Patent: July 13, 1993
    Assignee: Catalytica Inc.
    Inventors: Michael A. Richard, William A. Sanderson
  • Patent number: 5183401
    Abstract: This invention is a comparatively high pressure combustion process having a two stages in which a fuel is stepwise combusted using specific catalysts and catalytic structures and, optionally, having a final homogeneous combustion zone. The choice of catalysts and the use of specific structures, including those employing integral heat exchange, results in an overall catalyst structure which is stable due to its comparatively low temperature. The product combustion gas is at a temperature suitable for use in a gas turbine, furnace, boiler, or the like, but has low NO.sub.x content.
    Type: Grant
    Filed: November 26, 1990
    Date of Patent: February 2, 1993
    Assignees: Catalytica, Inc., Tanaka Kikinzoku Kogyo KK
    Inventors: Ralph A. Dalla Betta, Nobuyasu Ezawa, Kazunori Tsurumi, James C. Schlatter, Sarento G. Nickolas
  • Patent number: 5157197
    Abstract: This invention is a process for the alkylation of isoparaffin with olefins using a catalyst system comprising certain transition aluminas promoted with a Lewis acid (preferably BF.sub.3), and free Lewis acid. The product alkylate is a complex mixture of branched paraffins suitable for use as a high octane blending component for motor fuels.
    Type: Grant
    Filed: May 7, 1991
    Date of Patent: October 20, 1992
    Assignee: Catalytica, Inc.
    Inventors: Michael D. Cooper, David L. King, William A. Sanderson
  • Patent number: 5040551
    Abstract: A method for reducing the amount of carbon monoxide produced in the combustion of carbonaceous fuels. The fuel is coated on at least a portion of its exterior surface with a microporous layer of solid particulate matter which is non-combustible at temperatures in which the carbonaceous fuel combusts. This invention is particularly applicable in the reduction of carbon monoxide in the burning of carbonaceous fuel elements found in currently available "smokeless" cigarettes.
    Type: Grant
    Filed: November 1, 1988
    Date of Patent: August 20, 1991
    Assignee: Catalytica, Inc.
    Inventors: James C. Schlatter, R. A. DallaBetta, Glenn C. Morrison, Jane A. Nikkel
  • Patent number: 5026942
    Abstract: The selective isopropylation of a naphthyl compound to diisopropylnaphthalene enhanced in the 2,6-diisopropylnaphthalene isomer is obtained in the presence of an acidic crystalline molecular sieve catalyst having twelve membered oxygen rings. The catalyst pore aperture dimension range from 5.5 .ANG. to 7.0 .ANG.. The user of these shape selective catalysts results in a diisopropylnephthalene stream which is enhanced in .beta. isomers and enhanced in the desired 2,6-diisopropylnaphthalene isomer. A particularly preferred catalyst is synthetic Mordenite having a specific Si/Al ratio and NMR characteristics. Specific catalyst modifications are also described to improve selectivity to the desired 2,6-diisopropylnaphthalene isomer.
    Type: Grant
    Filed: December 12, 1989
    Date of Patent: June 25, 1991
    Assignee: Catalytica, Inc.
    Inventors: Jere D. Fellmann, Robert J. Saxton, Paul R. Wentrcek, Eric G. Derouane, Pascale Massiani
  • Patent number: 5026940
    Abstract: The selective isopropylation of biphenyl or 4-isopropylbiphenyl to diisopropylbiphenyl while maximizing the yield of the 4,4'-diisopropoylbiphenyl isomer is achieved by carrying out the reaction in the presence of an acidic crystalline molecular sieve with pore aperture 5.7-6.1 .ANG., preferably SAPO-11 or ZSM-12.
    Type: Grant
    Filed: September 8, 1989
    Date of Patent: June 25, 1991
    Assignee: Catalytica, Inc.
    Inventors: Jere Fellmann, Paul Wentrcek, Phat T. Lu
  • Patent number: 5017735
    Abstract: A process for enriching the fraction of 2,6-diisopropylnaphthalene contained in a quantity of mixed dialkylated naphthalenes. The mixed dialkylated naphthalenes are contacted with an adsorbant bed containing one or more molecular sieves which demonstrate shape selective preference for the 2,6-diisopropylnaphthalene isomer over other dialkylated naphthalenes. The adsorbant bed is then contacted with a desorbant capable of desorbing the 2,6-diisopropylnaphthalene from the pores of the adsorbant.
    Type: Grant
    Filed: July 24, 1989
    Date of Patent: May 21, 1991
    Assignee: Catalytica, Inc.
    Inventors: Jere Fellmann, Paul R. Wentrcek, Peter Kilner
  • Patent number: 5008468
    Abstract: This invention provides an improved process for the conversion of reactant into a reaction product, in the presence of a solid acid catalyst comprising sulfonic acid groups covalently bonded to a polymeric chain, wherein the improvement comprises increasing the rate of conversion, on an equivalent sulfonic acid basis, by providing, as said polymeric chain a compound represented by the general formula:M(O.sub.3 ZO.sub.x R).sub.nwherein M is a tetravalent metal ion; Z is a pentavalent atom, selected from the group consisting of elements of Group V of the Periodic Table of the Elements having an atomic weight greater than 30; x varies from 0 to 1; R is select d from the group consisting or organo radicals and mixtures of hydrogen radicals and organo radicals; and n varies from 1 to 2; provided that n is 1 when R is terminated with a tri- or tetraoxy pentavalent atom.
    Type: Grant
    Filed: August 21, 1989
    Date of Patent: April 16, 1991
    Assignee: Catalytica, Inc.
    Inventors: David L. King, Michael D. Cooper, Michael A. Faber
  • Patent number: 5003120
    Abstract: A process for the selective manufacture of 2,6-diisopropylnaphthalene from naphthalene advantageously combines an equilibration reactor to enhance the amount of monoisopropylnaphthalene fed to the alkylation reactor, and the use of a shape selective catalyst in the alkylation reactor, to obtain an alkylation reaction product in which the 2,6-diisopropylnaphthalene isomer comprises greater than 39 mole percent of the total diisopropylnaphthalene obtained. Further, this combination of reaction steps and conditions produces a reaction product in which the ratio of 2,6-diisopropylnaphthalene to 2,7-diisopropylnaphthalene is greater than 1.0, preferably greater than 1.2. Recycled process components are fed to the equilibration reactor where they are combined with fresh naphthalene feed to provide a monoisopropylnaphthalene enriched feed to the alkylation reactor.
    Type: Grant
    Filed: January 27, 1989
    Date of Patent: March 26, 1991
    Assignee: Catalytica, Inc.
    Inventors: Stanley F. Newman, Jere D. Fellmann, Peter H. Kilner
  • Patent number: 5003122
    Abstract: The selective isopropylation of a naphthyl compound to diisopropylnaphthalene enhanced in the 2,6-diisopropylnaphthalene isomer is obtained in the presence of an acidic crystalline molecular sieve catalyst having twelve membered oxygen rings. The catalyst pore aperture dimension ranges from 5.5 .ANG. to 7.0 .ANG.. The use of these shape selective catalysts results in a diisopropylnaphthalene stream which is enhanced in .beta. isomers and enhanced in the desired 2,6-diisopropylnaphthalene isomer. A particularly preferred catalyst is synthetic Mordenite. Specific catalyst modifications are also described to improve selectivity to the desired 2,6-diisopropylnaphthalene isomer.
    Type: Grant
    Filed: October 5, 1988
    Date of Patent: March 26, 1991
    Assignee: Catalytica, Inc.
    Inventors: Jere D. Fellman, Robert J. Saxton, Paul R. Wentrcek, Eric G. Derouane
  • Patent number: 4942218
    Abstract: The present invention provides a method of making a polymer by reacting, in the absence of water, an organic compound having the general formula R-H wherein R represents an organo radical having at least one unsaturated carbon-carbon bond and H is covalently bonded to one of said carbons, with PX.sub.3, wherein X is a halide radical, and zirconium ions to yield a reaction product and oxidizing and hydrolyzing such reaction product to yield a polymer represented by the general formula Zr(O.sub.3 PR).sub.n wherein n varies from about 1 to about 2.5. R may comprise sulfonic acid groups or may comprise sulfonatable site for sulfonation during the oxidation step. In either case, the resulting product is useful as an acid catalyst.
    Type: Grant
    Filed: May 23, 1988
    Date of Patent: July 17, 1990
    Assignee: Catalytica Associates, Inc.
    Inventors: William A. Sanderson, David L. King
  • Patent number: 4885399
    Abstract: Tischtschenko condensation of aldehydes is used to remove aldehydes from dry ketone-containing streams. The tischtschenko condensation is used to condense the aldehydes into esters whose boiling points are significantly different than the ketones, greatly simplifying the separation of the esters from the ketones. An organic extraction step is used to obtain a substantially dry ketone containing stream. One particularly preferred class of extraction solvents is selected from the group consisting of butane, pentane, hexane, heptane, octane, nonane, decane and mixtures thereof. In particularly preferred embodiments, the Tischtschenko reaction is used in the context of aqueous-phase catalyzed olefin oxidation to ketones. The aldehyde to ester condensation permits easy and efficient removal of the aldehyde analogs of the desired ketones.
    Type: Grant
    Filed: July 13, 1988
    Date of Patent: December 5, 1989
    Assignee: Catalytica, Inc.
    Inventors: Stanley F. Newman, Jacques C. De Deken, Michael L. Cook
  • Patent number: 4868343
    Abstract: This invention provides an improved process for the conversion of reactant into a reaction product, in the presence of a solid acid catalyst comprising sulfonic acid groups covalently bonded to a polymeric chain, wherein the improvement comprises increasing the rate of conversion, on an equivalent sulfonic acid basis, by providing, as said polymeric chain a compound represented by the general formula:M(O.sub.3 ZO.sub.x R).sub.nwherein M is a tetravalent metal ion; Z is a pentavalent atom, selected from the group consisting of elements of Group V of the Periodic Table of the Elements having an atomic weight greater than 30; x varies from 0 to 1; R is selected from the group consisting of organo radicals and mixtures of hydrogen radicals and organo radicals; and n varies from 1 to 2; provided that n is 1 when R is terminated with a tri-or tetraoxy pentavalent atom.
    Type: Grant
    Filed: April 16, 1986
    Date of Patent: September 19, 1989
    Assignee: Catalytica Inc.
    Inventors: David L. King, Michael D. Cooper, Michael A. Faber
  • Patent number: 4861921
    Abstract: A process for the manufacture of resorcinol is described which relies upon the intermediacy of a .alpha.,.beta.-unsaturated ketone which can be reacted with a hydroxy moiety-containing compound to obtain a resorcinol precursor which is subsequently converted to resorcinol. In a specific embodiment, 2-cyclohexenone is reacted dehydrogenated to resorcinol. In antoher embodiment, 2-cyclohexenone is oxidized to cyclohexane-1,3-dione which is dehydragenated obtain resorcinol.
    Type: Grant
    Filed: March 3, 1987
    Date of Patent: August 29, 1989
    Assignee: Catalytica Associates
    Inventors: Jere D. Fellmann, Robert J. Saxton, Paul Tung
  • Patent number: 4853357
    Abstract: The additional of redox-active metal components and ligands, alternatively or simultaneously, results in increased conversion and selectivity in the palladium-catalyzed oxidation of olefins to carbonyl products in the presence of polyoxoanions. In preferred modes, heteropolyoxoanions and Isopolyoxoanions containing tungsten, molybdenum and vanadium, individually or in combination, are described. The use of copper as the redox-active metal component shows reduced allylic reactivity. The elimination of chloride from the catalyst system provides substantial engineering advantages over the prior art, particularly, the reduction of corrosion and chloro-organic by-product formation. The use of redox-active metal components and/or ligands makes the palladium-polyoxoanion catalyst system industrially practicable.
    Type: Grant
    Filed: September 30, 1987
    Date of Patent: August 1, 1989
    Assignee: Catalytica Associates
    Inventors: Janis Vasilevskis, Jacques C. De Deken, Robert J. Saxton, Paul R. Wentrcek, Jere D. Fellmann, Lyubov S. Kipnis
  • Patent number: 4847421
    Abstract: A substantially chloride-free palladium oxidation system, comprising a palladium component, a copper component, and a ligand is described. The Wacker system, consisting of palladium and copper chlorides is also improved by the addition of a ligand. The palladium and copper counterion are independently selected from BF.sub.4.sup.--, CF.sub.3 COO.sup.--, CH.sub.3 COO.sup.--, SO.sub.4.sup..dbd., and NO.sub.3.sup.--. The ligand is preferably a nitrile-containing compound.
    Type: Grant
    Filed: January 29, 1988
    Date of Patent: July 11, 1989
    Assignee: Catalytica, Associates
    Inventors: Janis Vasilevskis, Paul L. Ridgway, Eric R. Evitt