Patents Assigned to Chiyoda Corporation
  • Publication number: 20170292079
    Abstract: The present invention provides a method for hydrocracking of petroleum heavy oil containing a heavy metal component, comprising a supplying step of supplying a raw material slurry containing the petroleum heavy oil and an iron-based catalyst as well as a hydrogen gas to a hydrocracking reactor; a hydrocracking step of hydrocracking the petroleum heavy oil in the hydrocracking reactor; a recovering step of recovering a residual oil component containing the iron-based catalyst from a product after the hydrocracking step; a disintegrating step of disintegrating the iron-based catalyst of the recovered residual oil component to acquire a disintegrated iron-based catalyst; and a resupplying step of resupplying a processed residual oil component containing the disintegrated iron-based catalyst to the hydrocracking reactor. At the disintegrating step, the iron-based catalyst may be pulverized by a pulverizing machine. The iron-based catalyst may be limonite.
    Type: Application
    Filed: September 1, 2015
    Publication date: October 12, 2017
    Applicants: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), CHIYODA CORPORATION
    Inventors: Motoharu MUROTA, Toshiaki OKUI, Yoichi TAKAHASHI
  • Publication number: 20170282165
    Abstract: Provided are zeolite catalysts that allow reactions to proceed at temperatures as low as possible when lower olefins are produced from hydrocarbon feedstocks with low boiling points such as light naphtha, make it possible to make propylene yield higher than ethylene yield in the production of lower olefins, and have long lifetime. The zeolite catalysts are used in the production of lower olefins from hydrocarbon feedstocks with low boiling points such as light naphtha. The zeolite catalysts are MFI-type crystalline aluminosilicates containing iron atoms and have molar ratios of iron atoms to total moles of iron atoms and aluminum atoms in the range from 0.4 to 0.7. The use of the zeolite catalysts make it possible to increase propylene yield, to lower reaction temperatures, and to extend catalyst lifetime.
    Type: Application
    Filed: June 19, 2017
    Publication date: October 5, 2017
    Applicant: CHIYODA CORPORATION
    Inventors: Shinya Hodoshima, Fuyuki Yagi, Azusa Motomiya, Shuhei Wakamatsu, Sachio Asaoka
  • Patent number: 9776180
    Abstract: Provided are: a hydrotreating catalyst for hydrocarbon oil having a hydrodesulfurization activity additionally improved by: simultaneously and continuously adding an aqueous solution of an acidic compound containing titanium and an aqueous solution containing an alkaline compound to a hydrosol containing an alumina hydrate particle at a temperature of 10 to 100° C. and a pH of 4.5 to 6.5; washing the resultant to remove a contaminating ion; forming the washed product after dehydration so as to have a moisture content at which it is formable; drying the resultant; impregnating the dried product with a catalytic component aqueous solution containing at least one kind of periodic table group 6 metal compound, at least one kind of periodic table group 8-10 metal compound, at least one kind of phosphorus compound, and at least one kind of saccharide; and drying the resultant; a manufacturing method for the catalyst; and a hydrodesulfurization treatment method for hydrocarbon oil using the catalyst.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: October 3, 2017
    Assignee: CHIYODA CORPORATION
    Inventors: Shinichi Inoue, Yukitaka Wada, Akihiro Mutou, Takeo Ono
  • Publication number: 20170252731
    Abstract: A lower olefin by using a zeolite catalyst, a composite catalyst capable of further extending the lifetime of catalytic activity, a method for producing the composite catalyst, a method for producing a lower olefin by using the composite catalyst, and a method for regenerating a composite catalyst in the method for producing a lower olefin are provided. The composite catalyst is a catalyst for producing a lower olefin from a hydrocarbon feedstock. This composite catalyst is constituted of a zeolite being a crystalline aluminosilicate containing gallium and iron or iron and further having a framework with 8- to 12-membered ring, and of silicon dioxide. By using the composite catalyst, a lower olefin can be continuously produced over a long period of time.
    Type: Application
    Filed: July 31, 2015
    Publication date: September 7, 2017
    Applicant: CHIYODA CORPORATION
    Inventors: Shinya HODOSHIMA, Fuyuki YAGI, Azusa MOTOMIYA, Shuhei WAKAMATSU
  • Patent number: 9725656
    Abstract: A synthesis gas production apparatus (reformer) to be used for a synthesis gas production step in a GTL (gas-to-liquid) process is prevented from being contaminated by metal components. A method of suppressing metal contamination of a synthesis gas production apparatus operating for a GTL process that includes a synthesis gas production step of producing synthesis gas by causing natural gas and gas containing steam and/or carbon dioxide to react with each other for reforming in a synthesis gas production apparatus in which, at the time of separating and collecting a carbon dioxide contained in the synthesis gas produced in the synthesis gas production step and recycling the separated and collected carbon dioxide as source gas for the reforming reaction in the synthesis gas production step, a nickel concentration in the recycled carbon dioxide is not higher than 0.05 ppmv.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: August 8, 2017
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., CHIYODA CORPORATION
    Inventors: Shuhei Wakamatsu, Fuyuki Yagi, Tomoyuki Mikuriya, Kenichi Kawazuishi
  • Patent number: 9718024
    Abstract: To provide a method for predicting a deactivation phenomenon in a flue-gas desulfurization unit to prevent the occurrence of the deactivation phenomenon before it happens. There is provided a method for preventing the occurrence of a deactivation phenomenon in a flue-gas desulfurization unit that treats flue gas of a coal-fired boiler, the method includes calculating a deactivation potential as an index of the deactivation phenomenon based on alkaline components such as Na, Ca, Mg, and K contained in ash in the flue gas, and performing an operation management, such as adjustment of set value of a pH control system, on the flue-gas desulfurization unit depending on change of the deactivation potential.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: August 1, 2017
    Assignee: Chiyoda Corporation
    Inventors: Noboru Takei, Chisa Nishizaki
  • Patent number: 9687781
    Abstract: This desulfurization device is for desulfurizing a discharge gas which contains sulfur oxides and which was discharged from a device for sulfuric acid production that includes a concentrated-sulfuric-acid production step in which sulfur trioxide gas obtained by oxidizing sulfur dioxide gas is absorbed in an aqueous sulfuric acid solution while supplying water thereto to thereby produce sulfuric acid having a concentration as high as 90 wt % or more but less than 99 wt %, the desulfurization device comprising: a desulfurization tower in which the sulfur oxides are removed from the discharge gas and, simultaneously therewith, dilute sulfuric acid is formed from the sulfur oxides; and a dilute sulfuric acid mixer which, in the concentrated-sulfuric-acid production step, mixes the dilute sulfuric acid with the aqueous sulfuric acid solution.
    Type: Grant
    Filed: October 25, 2013
    Date of Patent: June 27, 2017
    Assignee: Chiyoda Corporation
    Inventors: Kazushige Kawamura, Dai Takeda, Eiji Awai, Noboru Takei, Masataka Uemura
  • Patent number: 9662646
    Abstract: An aldehyde adsorbent that can adsorb and remove aldehyde from a carboxylic acid-containing liquid is provided. The aldehyde adsorbent is an aldehyde adsorbent for adsorbing aldehyde in a carboxylic acid-containing liquid containing aldehyde, including a cation exchange resin ion-exchanged with a polyvalent amine in 1 to 99% by mol of the total exchange capacity.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: May 30, 2017
    Assignee: CHIYODA CORPORATION
    Inventors: Zhixiong You, Yoichi Umehara, Tetsuro Matsumura, Takeshi Minami
  • Patent number: 9656232
    Abstract: A method for producing aromatic hydrocarbons, the method including: (a) bringing a feedstock oil such as an LCO into contact with an aromatic production catalyst to obtain a reaction product containing aromatic hydrocarbons, (b) separating the reaction product into a tower top fraction and a tower bottom fraction using a distillation tower, (c) separating the tower top fraction into a crude aromatic fraction containing an LPG fraction, and an off-gas containing hydrogen, (d) separating the crude aromatic fraction containing an LPG fraction into an LPG fraction and a crude aromatic fraction, (e) separating the off-gas containing hydrogen into hydrogen and an off-gas, and (f) using the hydrogen obtained in step (e) to hydrotreat the crude aromatic fraction, thereby obtaining an aromatic fraction.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: May 23, 2017
    Assignees: CHIYODA CORPORATION, JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Hideki Minami, Yoshishige Sugi, Atsushi Fukui, Atsuro Nagumo, Susumu Yasui, Shinichiro Yanagawa
  • Publication number: 20170136408
    Abstract: A treatment process of a gas containing zero-valent mercury and a mercury separation system, by which the amount of an iodine compound used can be reduced when the zero-valent mercury is separated from the gas containing the zero-valent mercury by using the iodine compound. The process has a step of oxidizing the zero-valent mercury contained in the gas with a first liquid phase containing an alkali metal iodide, thereby obtaining a second liquid phase containing a divalent mercury ion and an iodide ion; a step of separating the divalent mercury ion as mercury sulfide by adjusting the pH of the second liquid phase; and a step of circulating a third liquid phase which is obtained by separating the mercury sulfide in the mercury separation step to use the third liquid phase as the first liquid phase in the mercury oxidation step.
    Type: Application
    Filed: May 18, 2015
    Publication date: May 18, 2017
    Applicant: CHIYODA CORPORATION
    Inventors: Dai Takeda, Eiji Awai, Jun Matsumoto, Masataka Uemura, Hironobu Marukawa
  • Publication number: 20170132332
    Abstract: A plant design device displays a piping diagram of a plurality of control units on a screen according to piping information, wherein the control units have set therein boundary conditions indicating allowable ranges of loads applied to the control units respectively. A control unit that has a boundary condition designated by a user is displayed in the piping diagram on the screen in a visually identifiable manner from the other control units. A control unit with no boundary condition set may be displayed in the piping diagram on the screen in a visually identifiable manner from the other control units. In addition, referring to predicted loads of the control units computed by a simulator, a control unit, the predicted load of which does not satisfy the boundary condition, may be displayed in the piping diagram on the screen in a visually identifiable manner from the other control units.
    Type: Application
    Filed: January 26, 2017
    Publication date: May 11, 2017
    Applicant: CHIYODA CORPORATION
    Inventors: Masaki TAKAMURA, Ken URUSHIBARA
  • Patent number: 9638684
    Abstract: Provided is a method of evaluating a resin capable of quantitatively evaluating a deterioration degree of the resin with high accuracy and ease. The method includes evaluating the resin based on a shift of a characteristic peak representing a deterioration degree of the resin, the peak being observed in thermal analysis of the resin by a temperature increase, to lower temperatures.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: May 2, 2017
    Assignee: CHIYODA CORPORATION
    Inventors: Zhixiong You, Ryuichi Kanai, Yoichi Umehara, Takeshi Minami
  • Publication number: 20170074163
    Abstract: Provided is a system and a method which allow hydrogen to be produced both efficiently and in a stable manner when using exhaust gas produced by power generation as a heat source for the dehydrogenation reaction, controlling the temperature of the dehydrogenation reaction within an appropriate range.
    Type: Application
    Filed: March 25, 2015
    Publication date: March 16, 2017
    Applicant: Chiyoda Corporation
    Inventors: Osamu Ikeda, Tomoyuki Mikuriya, Toshiki Furukawa, Yuhi Ozaki
  • Patent number: 9487457
    Abstract: The present method for producing monocyclic aromatic hydrocarbons is a method for producing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms. This method includes a cracking and reforming reaction step of bringing oil feedstock into contact with a catalyst to cause a reaction and obtain a product containing monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms and a heavy fraction having 9 or more carbon atoms, a purification and recovery step of purifying and recovering the monocyclic aromatic hydrocarbons having 6 to 8 carbon atoms separated from the product formed by the cracking and reforming reaction step, and a first returning step of returning at least a portion of toluene obtained by the purification and recovery step to the cracking and reforming reaction step.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: November 8, 2016
    Assignees: JX Nippon Oil & Energy Corporation, CHIYODA CORPORATION
    Inventors: Shinichiro Yanagawa, Yasuyuki Iwasa, Ryoji Ida, Masahide Kobayashi, Susumu Yasui, Yoshishige Sugi, Atsushi Fukui, Akira Utatsu
  • Publication number: 20160313056
    Abstract: By controlling an excessive rise in the temperature of the material gas that is introduced into the liquefaction unit following the compression by a compressor, the temperature of the material gas may be adjusted to the temperature level at the introduction point of the liquefaction unit. A system (1) for the liquefaction of natural gas, comprises a first expander (3) for expanding natural gas under pressure as material gas; a first cooling unit (10, 11, 12) for cooling the material gas; a distillation unit (15) for reducing or eliminating a heavy component in the material gas by distilling the material gas cooled by the first cooler; a first compressor (4) for receiving a top fraction of the material gas from which the heavy component was reduced or eliminated by the distillation unit; and a liquefaction unit (21) for liquefying a gas phase component separated from the compressed material gas compressed by the first compressor by exchanging heat with a refrigerant.
    Type: Application
    Filed: December 26, 2014
    Publication date: October 27, 2016
    Applicant: Chiyoda Corporation
    Inventors: Yoshitsugi Kikkawa, Koichiro Sakai
  • Patent number: 9463452
    Abstract: A hydrotreating catalyst for hydrocarbon oil having a hydrodesulfurization activity additionally improved by: simultaneously and continuously adding an aqueous solution of an acidic compound containing titanium and an aqueous solution containing an alkaline compound to a hydrosol containing an alumina hydrate particle at a temperature of 10 to 100° C. and a pH of 4.5 to 6.5; washing the resultant to remove a contaminating ion; forming the washed product after dehydration so as to have a moisture content at which it is formable; drying the resultant; impregnating the dried product with a catalytic component aqueous solution containing periodic table group 6 metal compound, periodic table group 8-10 metal compound, phosphorus compound, and saccharide; and drying the resultant; a manufacturing method for the catalyst; and a hydrodesulfurization treatment method for hydrocarbon oil using the catalyst.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: October 11, 2016
    Assignee: CHIYODA CORPORATION
    Inventors: Shinichi Inoue, Yukitaka Wada, Akihiro Mutou, Takeo Ono
  • Publication number: 20160272895
    Abstract: A synthesis gas production apparatus (reformer) to be used for a synthesis gas production step in a GTL (gas-to-liquid) process is prevented from being contaminated by metal components. A method of suppressing metal contamination of a synthesis gas production apparatus operating for a GTL process that includes a synthesis gas production step of producing synthesis gas by causing natural gas and gas containing steam and/or carbon dioxide to react with each other for reforming in a synthesis gas production apparatus in which, at the time of separating and collecting a carbon dioxide contained in the synthesis gas produced in the synthesis gas production step and recycling the separated and collected carbon dioxide as source gas for the reforming reaction in the synthesis gas production step, a nickel concentration in the recycled carbon dioxide is not higher than 0.05 ppmv.
    Type: Application
    Filed: June 1, 2016
    Publication date: September 22, 2016
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., CHIYODA CORPORATION
    Inventors: Shuhei Wakamatsu, Fuyuki Yagi, Tomoyuki Mikuriya, Kenichi Kawazuishi
  • Patent number: 9440902
    Abstract: To provide a production method for suppressing the reduction in production rate of a carbonyl compound due to transferring a noble metal component into liquid phase. A method for producing a carbonyl compound, including: a reaction step of reacting a carbonylation raw material with CO in liquid phase including a solid catalyst having noble metal complex on a resin carrier containing quaternized nitrogen to produce a carbonyl compound; a distillation step of distilling a reaction product liquid to recover gas phase distillate including the carbonyl compound; and a circulation step of circulating a bottom product from the distillation to reaction step. After part of the bottom product contacts with an acidic cation-exchange resin to remove nitrogen compound, liquid having higher moisture concentration than the bottom product contacts with the resin to extract noble metal complex captured by oligomer adsorbing the resin, and the complex is returned to the reaction step.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: September 13, 2016
    Assignee: CHIYODA CORPORATION
    Inventors: Zhixiong You, Yoichi Umehara, Tetsuro Matsumura, Takeshi Minami
  • Publication number: 20160236142
    Abstract: Provided is a desulfurization method for sulfur oxide gas that includes: bringing a first sulfur oxide gas into contact with a humidifying liquid to obtain a second gas; separating at least part of the humidifying liquid from the second gas to obtain a third gas; contacting the third gas with an alkaline agent-containing liquid and oxygen to remove sulfur oxide from the third gas; using the alkaline agent-containing liquid as the humidifying liquid to be brought into contact with the first gas in the humidifying liquid contact step; acquiring at least part of the humidifying liquid separated from the second gas; removing gas from the humidifying liquid; and recovering a by-product, the alkaline agent-containing liquid, and oxygen from the humidifying liquid from which the gas has been removed in the gas removal step, the by-product recovery step being performed only downstream of the humidifying liquid acquisition step.
    Type: Application
    Filed: August 25, 2014
    Publication date: August 18, 2016
    Applicant: CHIYODA CORPORATION
    Inventors: Hirokazu YASUDA, Noboru TAKEI, Naobumi KUROSAKI
  • Patent number: RE46145
    Abstract: Provided are: a uniformly, highly dispersed metal catalyst including a catalyst carrier and a catalyst metal being loaded thereon dispersed throughout the carrier, the uniformly, highly dispersed metal catalyst having excellent performances with respect to catalytic activity, selectivity, life, etc.; and a method of producing the same. The uniformly, highly dispersed metal catalyst includes a catalyst carrier made of a metal oxide and a catalyst metal having catalytic activity, the catalyst metal being loaded on the catalyst carrier, in which the catalyst carrier is a sulfur-containing catalyst carrier having sulfur or a sulfur compound almost evenly distributed throughout the carrier and the catalyst metal is loaded on the sulfur-containing catalyst carrier in a substantially evenly dispersed manner over the entire carrier substantially according to the distribution of the sulfur or the sulfur compound.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: September 13, 2016
    Assignee: CHIYODA CORPORATION
    Inventors: Yoshimi Okada, Toshiji Makabe, Masashi Saito, Hiroaki Nishijima