Patents Assigned to Corning Incorporated
  • Patent number: 11919805
    Abstract: A silica-based substrate includes a glass phase and a dispersed phase having carbon, such that the silica-based substrate has a thickness of at least 10 gm. Also disclosed is a method of forming a silica-based substrate, the method including contacting a porous silica soot preform with an organic solution having at least one hydrocarbon precursor to form a doped silica soot preform and heating the doped silica soot preform in an inert atmosphere to form the silica-based substrate.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: March 5, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Yunfeng Gu, Nicolas LeBlond, Ming-Jun Li, Jeffery Scott Stone, Haitao Zhang
  • Patent number: 11920914
    Abstract: Provided herein are measurement systems including a micrometer assembly for receiving a length of tubing, the micrometer assembly including a plurality of non-contact optical micrometers disposed around the length of tubing for measuring an outer diameter (OD) at a first plurality of positions along a circumference of the length of tubing. The measurement system may further include a displacement gauge assembly for receiving the length of tubing from the optical micrometer assembly, the displacement gauge assembly including a plurality of non-contact gauges disposed around the length of tubing for measuring a wall thickness at a second plurality of positions along the circumference of the length of tubing. A controller receives the OD measurements and thickness measurements, and determines an inner diameter and a concentricity of the length of glass tubing based on an index of refraction of the length of glass tubing, the OD measurements, and the thickness measurements.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: March 5, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Jerry Lee Hepburn, Aniello Mario Palumbo
  • Patent number: 11921102
    Abstract: An optical imaging system for cell culture monitoring is provided. The system includes an illumination segment having an illumination source and a collimating lens positioned between a first surface of a cell culture vessel and the illumination source. The illumination source and the collimating lens are arranged to transmit light through the first surface at an angle oblique to the first surface of the cell culture vessel. The system also includes a detection segment having a detector and a lens positioned between the first surface of the cell culture vessel and the detector. The lens focuses light to the detector through an aperture stop, and the detector receives light that exits the first surface of the cell culture vessel at an angle oblique to the first surface.
    Type: Grant
    Filed: November 21, 2019
    Date of Patent: March 5, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Joshua Monroe Cobb, Mark Christian Sanson
  • Patent number: 11919822
    Abstract: Methods of firing ceramic honeycomb bodies are disclosed that include heating the ceramic honeycomb bodies and blocking furnace gases from flowing through the ceramic honeycomb body by placing an aluminum metal layer adjacent an endface of the honeycomb body. Heating removes organic pore-forming material and graphite pore-forming material in the ceramic honeycomb body. The aluminum metal layer oxidizes to form a porous Al2O3 layer after firing to a first temperature, and furnace gases flow through the ceramic honeycomb body.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: March 5, 2024
    Assignee: Corning Incorporated
    Inventors: Thomas Richard Chapman, Douglas Richard Wing
  • Patent number: 11912620
    Abstract: A glass article including at least about 40 mol % SiO2 and, optionally, a colorant imparting a preselected color is disclosed. In general, the glass includes, in mol %, from about 40-70 SiO2, 0-25 Al2O3, 0-10 B2O3; 5-35 Na2O, 0-2.5 K2O, 0-8.5 MgO, 0-2 ZnO, 0-10% P2O5 and 0-1.5 CaO. As a result of ion exchange, the glass includes a compressive stress (?s) at at least one surface and, optionally, a color. In one method, communicating a colored glass with an ion exchange bath imparts ?s while in another; communicating imparts ?s and a preselected color. In the former, a colorant is part of the glass batch while in the latter; it is part of the bath. In each, the colorant includes one or more metal containing dopants formulated to impart to a preselected color. Examples of one or more metal containing dopants include one or more transition and/or rare earth metals.
    Type: Grant
    Filed: October 24, 2022
    Date of Patent: February 27, 2024
    Assignee: Corning Incorporated
    Inventors: John Christopher Mauro, Marcel Potuzak
  • Patent number: 11912614
    Abstract: Glass-based articles are frangible, comprising a peak central tension (CT) in a tensile region that is greater than: (E/68 GPa)*75 MPa*1 mm0.5/?(t), where E is the Young's modulus value of the glass-based substrate utilized to form the glass-based article. The stress profiles of the glass-based articles may comprise: a maximum compressive stress (CSmax) greater than or equal to 150 MPa; a depth of compression (DOC) that is greater than or equal to 0.21t; a peak central tension (CT) in a tensile region that is greater than or equal to 100 MPa to less than or equal to 220 MPa; and/or a negative curvature region, wherein a second derivative of stress as a function of depth is negative.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: February 27, 2024
    Assignee: CORNING INCORPORATED
    Inventor: Vitor Marino Schneider
  • Patent number: 11912619
    Abstract: A textured glass article includes: a body comprising an aluminosilicate glass comprising greater than or equal to 16 wt % Al2O3, the body having at least a first surface; and a plurality of polyhedral surface features extending from the first surface, each of the plurality of polyhedral surface features comprising a base on the first surface, a plurality of facets extending from the first surface, and a surface feature size at the base greater than or equal to 10 ?m and less than or equal to 350 ?m, wherein the plurality of facets of each polyhedral surface feature converge toward one another.
    Type: Grant
    Filed: August 31, 2021
    Date of Patent: February 27, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Xinyu Cao, Christine Cecala, Ling Chen, Wanghui Chen, Yuhui Jin, Cameron Robert Nelson, Jayantha Senawiratne, David Lee Weidman
  • Patent number: 11912609
    Abstract: A glass-ceramic includes a silicate-containing glass and crystals within the silicate-containing glass. The crystals include non-stoichiometric tungsten and/or molybdenum sub-oxides, and the crystals are intercalated with dopant cations.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: February 27, 2024
    Assignee: Corning Incorporated
    Inventors: Matthew John Dejneka, Jesse Kohl
  • Patent number: 11912615
    Abstract: Glass-based articles comprise stress profiles providing improved fracture resistance. The glass-based articles herein provide high fracture resistance after multiple drops.
    Type: Grant
    Filed: March 6, 2023
    Date of Patent: February 27, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Timothy Michael Gross, Xiaoju Guo, Jason Thomas Harris, Peter Joseph Lezzi, Alexandra Lai Ching Kao Andrews Mitchell, Pascale Oram, Kevin Barry Reiman, Rostislav Vatchev Roussev, Ljerka Ukrainczyk
  • Patent number: 11912605
    Abstract: A method for making a glass ribbon that includes: flowing a glass into a caster having a width (Wcast) from about 100 mm to about 5 m and a thickness (t) from about 1 mm to about 500 mm to form an a cast glass; cooling the cast glass in the caster to a viscosity of at least 108 Poise; conveying the cast glass from the caster; drawing the cast glass, the drawing comprising heating the cast glass to an average viscosity of less than 107 Poise and drawing the cast glass into a glass ribbon having a width (Wribbon) that is less than Wcast; and thereafter cooling the glass ribbon to ambient temperature. Further, the cast glass during the cooling, conveying and drawing steps is about 50° C. or higher.
    Type: Grant
    Filed: January 11, 2021
    Date of Patent: February 27, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Thierry Luc Alain Dannoux, Vladislav Yuryevich Golyatin, Randy Lee Rhoads
  • Patent number: 11914220
    Abstract: A liquid lens includes an orientation sensor such as a gyroscope to compensate for the effects of motion. A raw gyroscope signal, including noise components, can be provided to the controller without processing by phase-shifting filters. One or more filters can be applied to the raw gyroscope signal to allow a band of frequencies to pass without introducing phase delay. The controller can use a feed forward system to generate control output signals based at least in part on the raw gyroscope signal, including noise components. The control output signals can be used to drive voltage signals to electrodes to compensate for motion.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: February 27, 2024
    Assignee: CORNING INCORPORATED
    Inventor: Raymond Miller Karam
  • Patent number: 11917897
    Abstract: A polymer blend, including at least one organic semiconductor (OSC) polymer and at least one photosensitizer, such that the at least one OSC polymer is a diketopyrrolopyrrole-fused thiophene polymeric material, wherein the fused thiophene is beta-substituted.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: February 27, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Mingqian He, Xin Li, Yang Li, Hongxiang Wang
  • Patent number: 11912968
    Abstract: A microcavity dish (10) for cultivating cells includes a dish body including a sidewall (16) that encloses a cell culture chamber within the dish body. The dish body has a top and a bottom (12). The bottom includes a cell culturing substrate comprising an array of microcavities (46). The sidewall includes a transition portion (30) that divides the sidewall into an upper portion and a lower portion that is offset inward relative to the upper portion defining a liquid medium delivery surface (26) that extends at least partially along an interior surface (28) of the sidewall and slopes toward the bottom.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: February 27, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Gregory Roger Martin, Allison Jean Tanner
  • Patent number: 11912618
    Abstract: In embodiments, a glass composition may include: greater than or equal to 71 mol. % and less than or equal to 83 mol. % SiO2; greater than or equal to 1 mol. % and less than or equal to 11 mol. % Al2O3; greater than or equal to 5 mol. % and less than or equal to 18 mol. % alkali oxide, the alkali oxide comprising greater than 3 mol. % Li2O and at least one of Na2O and K2O; greater than or equal to 1 mol. % and less than or equal to 8 mol. % alkaline earth oxide, the alkaline earth oxide comprising MgO and at least one of CaO, BaO, and SrO; and at least one of TiO2, ZrO2, HfO2, La2O3 and Y2O3, wherein TiO2+ZrO2+HfO2+La2O3+Y2O3 is greater than 0 mol. % and less than or equal to 6 mol. % and Al2O3+TiO2+ZrO2+HfO2+La2O3+Y2O3 is greater than or equal to 2 mol. % and less than or equal to 12 mol. %.
    Type: Grant
    Filed: March 5, 2020
    Date of Patent: February 27, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Nadja Teresia Lönnroth, Lina Ma, Robert Anthony Schaut
  • Patent number: 11912010
    Abstract: A glass substrate comprises a glass clad layer fused to a glass core layer. The glass core layer comprises a core glass composition having an average core coefficient of thermal expansion (CTEcore) and the glass clad layer comprises a clad glass composition having an average clad coefficient of thermal expansion (CTEclad) that is less than the CTEcore. A maximum tensile stress in the glass core layer is less than 15 MPa.
    Type: Grant
    Filed: February 25, 2020
    Date of Patent: February 27, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Petr Gorelchenko, Jin Su Kim, Lu Zhang
  • Patent number: 11912860
    Abstract: The disclosure provides high viscosity, organic resin systems incorporating inorganic materials. The resin systems incorporate glasses, glass ceramics, or ceramics in high load levels and are particularly useful for development of three dimensional articles and in additive manufacturing processes. Processes for making the resin systems are also provided.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: February 27, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Laura Beth Cook, Laura Jeanne Cunneen, Richard Curwood Peterson, Kathleen Ann Wexell
  • Patent number: 11906482
    Abstract: An apparatus for testing the edge strength of a discrete sheet of material such as glass where the sheet has an irregular free-form shaped outline is disclosed. The apparatus can include a plurality of assemblies configured for selectively applying a 3-point bending load on an edge of the sheet of material in a test region of the apparatus, a detection mechanism that optically measures strain in the sheet of material in the region, and a processor that determines the stress in the sheet based on the measured strain by calculating the stress that would be required to produce the measured strain in the sheet of material.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: February 20, 2024
    Assignee: Corning Incorporated
    Inventors: Gabriel Pierce Agnello, Chong Pyung An, Zhenxing Hu, Bosun Jang, Peter Knowles, Balamurugan Meenakshi Sundaram, Douglas Miles Noni, Jr., Richard Sean Priestley, Jamie Todd Westbrook
  • Patent number: 11906771
    Abstract: Embodiments of the disclosure relates to a light-diffusing element. The light diffusing element includes a glass core having a first refractive index. The light diffusing element also includes a cladding surrounding the glass core. The cladding includes an inner cladding surface and an outer cladding surface. The inner cladding surface and the outer cladding surface define a cladding thickness of from 5 ?m to 30 ?m. The cladding has a second refractive index that is less than the first refractive index of the glass core. The light diffusing element also includes a coating surrounding the cladding. The coating has an inner coating surface and an outer coating surface. The inner coating surface contacts the outer cladding surface. The outer coating surface defines an outermost surface of the light-diffusing element, and the coating includes first scattering centers.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: February 20, 2024
    Assignee: Corning Incorporated
    Inventors: Kevin Wallace Bennett, Stephan Lvovich Logunov
  • Patent number: 11905506
    Abstract: A multilayered cell culture apparatus for the culturing of cells is disclosed. The cell culture apparatus is defined as an integral structure having a plurality of cell culture chambers in combination with tracheal space(s). The body of the apparatus has imparted therein gas permeable membranes in combination with tracheal spaces that will allow the free flow of gases between the cell culture chambers and the external environment. The flask body also includes an aperture that will allow access to the cell growth chambers by means of a needle or cannula. The size of the apparatus, and location of an optional neck and cap section, allows for its manipulation by standard automated assay equipment, further making the apparatus ideal for high throughput applications.
    Type: Grant
    Filed: February 3, 2022
    Date of Patent: February 20, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Gregory Roger Martin, Allison Jean Tanner
  • Patent number: 11905202
    Abstract: A method of modifying a glass substrate comprises: generating surface features with peaks and valleys on a first surface of a glass substrate, the surface features providing a roughness average (Ra) within the range of 10 nm to 2000 nm; generating a region of the glass substrate that is under compressive stress, the region extending from the first surface to a depth of compression; and removing a portion of the region under compressive stress from the first surface into the depth of compression to define a new first surface still having surface features with peaks and valleys providing a roughness average (Ra) within the range of 10 nm to 2000 nm. Removing the portion of the region under compressive stress from the first surface into the depth of the compression to define a new first surface can comprise contacting the first surface with a light etchant.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: February 20, 2024
    Assignee: Corning Incorporated
    Inventors: Yuhui Jin, Taylor Marie Wilkinson