Patents Assigned to Corporation for National Research Initiatives
  • Patent number: 8895338
    Abstract: An improved method for the fabrication of Micro-Electro-Mechanical Systems (MEMS), Nano-Electro-Mechanical Systems (NEMS), Photonics, Nanotechnology, 3-Dimensional Integration, Micro- and Nano-Fabricated Devices and Systems for both rapid prototyping development and manufacturing is disclosed. The method includes providing a plurality of different standardized and repeatable process modules usable in fabricating the devices and systems, defining a process sequence for fabricating a predefined one of the devices or systems, and identifying a series of the process modules that are usable in performing the defined process sequence and thus in fabricating the predefined device or system.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: November 25, 2014
    Assignee: Corporation for National Research Initiatives
    Inventor: Michael A. Huff
  • Patent number: 8852378
    Abstract: The present invention relates generally to a metallic alloy composed of Titanium and Tungsten that together form an alloy having a Coefficient of Thermal Expansion (CTE), wherein the content of the respective constituents can be adjusted so that the alloy material can be nearly perfectly matched to that of a commonly used semiconductor and ceramic materials. Moreover, alloys of Titanium-Tungsten have excellent electrical and thermal conductivities making them ideal material choices for many electrical, photonic, thermoelectric, MMIC, NEMS, nanotechnology, power electronics, MEMS, and packaging applications. The present invention describes a method for designing the TiW alloy so as to nearly perfectly match the coefficient of thermal expansion of a large number of different types of commonly used semiconductor and ceramic materials.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: October 7, 2014
    Assignee: Corporation for National Research Initiatives
    Inventors: Michael A. Huff, Paul Sunal
  • Publication number: 20140268076
    Abstract: A dynamic pattern generator (DPG) device and method of making a DPG device are disclosed. The DPG device is used in semiconductor processing tools that require multiple electron-beams, such as direct-write lithography. The device is a self-aligned DPG device that enormously reduces the required tolerances for aligning the various electrode layers, as compared to other design configurations including the non-self-aligned approach and also greatly simplifies the process complexity and cost. A process sequence for both integrated and non-integrated versions of the self-aligned DPG device is described. Additionally, an advanced self-aligned DPG device that eliminates the need for a charge dissipating coating or layer to be used on the device is described. Finally, a fabrication process for the implementation of both integrated and non-integrated versions of the advanced self-aligned DPG device is described.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: CORPORATION FOR NATIONAL RESEARCH INITIATIVES
    Inventor: CORPORATION FOR NATIONAL RESEARCH INITIATIVES
  • Patent number: 8790534
    Abstract: A system and method are disclosed for the precision fabrication of Micro-Electro-Mechanical Systems (MEMS), Nano-Electro-Mechanical Systems (NEMS), Microsytems, Nanosystems, Photonics, 3-D integration, heterogeneous integration, and Nanotechology devices and structures. The disclosed system and method can also be used in any fabrication technology to increase the precision and accuracy of the devices and structures being made compared to conventional means of implementation. A platform holds and moves a substrate to be machined during machining and a plurality of lasers and/or ion beams are provided that are capable of achieving predetermined levels of machining resolution and precision and machining rates for a predetermined application. The plurality of lasers and/or ion beams comprises a plurality of the same type of laser and/or ion beam.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: July 29, 2014
    Assignee: Corporation for National Research Initiatives
    Inventor: Michael A. Huff
  • Patent number: 8660157
    Abstract: A laser diode system is disclosed in which a substrate made of a semiconductor material containing laser diodes is bonded to a substrate made from a metallic material without the use of any intermediate joining or soldering layers between the two substrates. The metal substrate acts as an electrode and/or heat sink for the laser diode semiconductor substrate. Microchannels may be included in the metal substrate to allow coolant fluid to pass through, thereby facilitating the removal of heat from the laser diode substrate. A second metal substrate including cooling fluid microchannels may also be bonded to the laser diode substrate to provide greater heat transfer from the laser diode substrate. The bonding of the substrates at low temperatures, combined with modifications to the substrate surfaces, enables the realization of a low electrical resistance interface and a low thermal resistance interface between the bonded substrates.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: February 25, 2014
    Assignee: Corporation for National Research Initiatives
    Inventors: Michael A. Huff, Jonah Jacob
  • Patent number: 8423670
    Abstract: A set of multiple servers in which each server (a) provides a service having a name or other identifier, and for which each server (b) has a network address that differs from the network addresses of the other servers in the set, and (c) is co-located with a resolution mechanism that maps a name or other identifier of the service that is received from a client to a network address that is local to the resolution mechanism. The resolution mechanisms are operated to enable a client to choose one of the servers as being currently operational and/or accessible to provide the service to the client, and to so choose the server without the client needing to first access the chosen server.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: April 16, 2013
    Assignee: Corporation for National Research Initiatives
    Inventor: Sean David Reilly
  • Publication number: 20130008875
    Abstract: A variable capacitor device is disclosed in which the capacitive tuning ratio and quality factor are increased to very high levels, and in which the capacitance value of the device is tuned and held to a desired value with a high level of accuracy and precision using a laser micromachining tuning process on suitably designed and fabricated capacitor devices. The tuning of the variable capacitor devices can be performed open-loop or closed-loop, depending on the precision of the eventual capacitor value needed or desired. Furthermore, the tuning to a pre-determined value can be performed before the variable capacitor device is connected to a circuit, or alternatively, the tuning to a desired value can be performed after the variable capacitor device has been connected into a circuit.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 10, 2013
    Applicant: Corporation for National Research Initiatives
    Inventors: Michael A. HUFF, Mehmet Ozgur
  • Patent number: 8304324
    Abstract: A method of wafer or substrate bonding a substrate made of a semiconductor material with a substrate made from a metallic material is disclosed. The method allows the bonding of the two substrates together without the use of any intermediate joining gluing, or solder layer(s) between the two substrates. The method allows the moderate or low temperature bonding of the metal and semiconductor substrates, combined with methods to modify the materials so as to enable low electrical resistance interfaces to be realized between the bonded substrates, and also combined with methods to obtain a low thermal resistance interface between the bonded substrates, thereby enabling various useful improvements for fabrication, packaging and manufacturing of semiconductor devices and systems.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: November 6, 2012
    Assignee: Corporation for National Research Initiatives
    Inventor: Michael Huff
  • Patent number: 8270081
    Abstract: A method of reflecting impinging electromagnetic radiation by using engineered surfaces of alternating layers of materials having different indices of refraction is described. These layers can be fabrication or applied onto the surfaces of macro-scale objects. Also, a method of limiting the heating within the interior of an object being impinged upon by electromagnetic radiation is described.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: September 18, 2012
    Assignee: Corporation For National Research Initiatives
    Inventor: Michael A Huff
  • Publication number: 20110309553
    Abstract: A system and method are disclosed for the precision fabrication of Micro-Electro-Mechanical Systems (MEMS), Nano-Electro-Mechanical Systems (NEMS), Microsytems, Nanosystems, Photonics, 3-D integration, heterogeneous integration, and Nanotechology devices and structures. The disclosed system and method can also be used in any fabrication technology to increase the precision and accuracy of the devices and structures being made compared to conventional means of implementation. A platform holds and moves a substrate to be machined during machining and a plurality of lasers and/or ion beams are provided that are capable of achieving predetermined levels of machining resolution and precision and machining rates for a predetermined application. The plurality of lasers and/or ion beams comprises a plurality of the same type of laser and/or ion beam.
    Type: Application
    Filed: May 2, 2011
    Publication date: December 22, 2011
    Applicant: Corporation for National Research Initiatives
    Inventor: Michael A. HUFF
  • Patent number: 8007695
    Abstract: A method is disclosed of implementing lens elements or lens arrays having dimensions ranging from a few centimeters down to the micro-scale or nano-scale using the surface tension of the lens material in a molten state to allow the curved shape of the lens to be precisely defined. The method has useful application in the fabrication of lens elements and lens arrays out of a large variety of material types, including elemental materials, as well as compound materials and alloys. The method also allows the implementation of lenses having far superior surface smoothness compared to other approaches, as well as very accurate lens shapes. The method allows the making of high quality lenses and lens arrays, wherein the diameter of the lenses are on the order of a few microns or less. Convex, concave, plano-convex, plano-concave, compound lenses, and many other types of lens shapes can be implemented using the method of the present invention.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: August 30, 2011
    Assignee: Corporation for National Research Initiatives
    Inventor: Michael A. Huff
  • Patent number: 7994463
    Abstract: Methods for fabricating structures such as transducer pedestal structures and transducers fabricated by the methods.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: August 9, 2011
    Assignees: Corporation for National Research Initiatives, Science Research Laboratory
    Inventors: Allen M. Flusberg, Michael A. Huff
  • Publication number: 20100118407
    Abstract: A method of reflecting impinging electromagnetic radiation by using engineered surfaces of alternating layers of materials having different indices of refraction is described. These layers can be fabrication or applied onto the surfaces of macro-scale objects. Also, a method of limiting the heating within the interior of an object being impinged upon by electromagnetic radiation is described.
    Type: Application
    Filed: November 10, 2008
    Publication date: May 13, 2010
    Applicant: Corporation for National Research Initiatives
    Inventor: Michael A. Huff
  • Publication number: 20100108254
    Abstract: The present invention relates generally to a metallic alloy composed of Titanium and Tungsten that together form an alloy having a Coefficient of Thermal Expansion (CTE), wherein the content of the respective constituents can be adjusted so that the alloy material can be nearly perfectly matched to that of a commonly used semiconductor and ceramic materials. Moreover, alloys of Titanium-Tungsten have excellent electrical and thermal conductivities making them ideal material choices for many electrical, photonic, thermoelectric, MMIC, NEMS, nanotechnology, power electronics, MEMS, and packaging applications. The present invention describes a method for designing the TiW alloy so as to nearly perfectly match the coefficient of thermal expansion of a large number of different types of commonly used semiconductor and ceramic materials.
    Type: Application
    Filed: June 30, 2009
    Publication date: May 6, 2010
    Applicant: Corporation for National Research Initiatives
    Inventors: Michael A. Huff, Paul Sunal
  • Publication number: 20090283927
    Abstract: A method is disclosed of implementing lens elements or lens arrays having dimensions ranging from a few centimeters down to the micro-scale or nano-scale using the surface tension of the lens material in a molten state to allow the curved shape of the lens to be precisely defined. The method has useful application in the fabrication of lens elements and lens arrays out of a large variety of material types, including elemental materials, as well as compound materials and alloys. The method also allows the implementation of lenses having far superior surface smoothness compared to other approaches, as well as very accurate lens shapes. The method allows the making of high quality lenses and lens arrays, wherein the diameter of the lenses are on the order of a few microns or less. Convex, concave, plano-convex, plano-concave, compound lenses, and many other types of lens shapes can be implemented using the method of the present invention.
    Type: Application
    Filed: March 12, 2009
    Publication date: November 19, 2009
    Applicant: Corporation for National Research Initiatives
    Inventor: Michael A. Huff
  • Publication number: 20090286382
    Abstract: A method of wafer or substrate bonding a substrate made of a semiconductor material with a substrate made from a metallic material is disclosed. The method allows the bonding of the two substrates together without the use of any intermediate joining gluing, or solder layer(s) between the two substrates. The method allows the moderate or low temperature bonding of the metal and semiconductor substrates, combined with methods to modify the materials so as to enable low electrical resistance interfaces to be realized between the bonded substrates, and also combined with methods to obtain a low thermal resistance interface between the bonded substrates, thereby enabling various useful improvements for fabrication, packaging and manufacturing of semiconductor devices and systems.
    Type: Application
    Filed: September 22, 2008
    Publication date: November 19, 2009
    Applicant: Corporation for National Research Initiatives
    Inventor: Michael A. Huff
  • Patent number: 7536769
    Abstract: An acoustic pressure type sensor is fabricated on a supporting substrate by depositing and etching a number of thin films on the supporting substrate and by machining the supporting substrate. The resulting structure contains a pressure sensitive, electrically conductive diaphragm positioned at a distance from an electrically conductive fixed electrode. In operation, the diaphragm deflects in response to an acoustic pressure and the corresponding change of electrical capacitance between the diaphragm and the fixed electrode is detected using an electrical circuit. Two or more such acoustic sensors are combined on the same supporting substrate with an interaural flexible mechanical connection, to form a directional sensor with a small surface area.
    Type: Grant
    Filed: May 25, 2006
    Date of Patent: May 26, 2009
    Assignee: Corporation for National Research Initiatives
    Inventor: Michael Pedersen
  • Publication number: 20090002914
    Abstract: A variable capacitor device is disclosed in which the capacitive tuning ratio and quality factor are increased to very high levels, and in which the capacitance value of the device is tuned and held to a desired value with a high level of accuracy and precision using a laser micromachining tuning process on suitably designed and fabricated capacitor devices. The tuning of the variable capacitor devices can be performed open-loop or closed-loop, depending on the precision of the eventual capacitor value needed or desired. Furthermore, the tuning to a pre-determined value can be performed before the variable capacitor device is connected to a circuit, or alternatively, the tuning to a desired value can be performed after the variable capacitor device has been connected into a circuit.
    Type: Application
    Filed: June 27, 2008
    Publication date: January 1, 2009
    Applicant: Corporation for National Research Initiatives
    Inventors: Michael A. Huff, Mehmet Ozgur
  • Patent number: 7400737
    Abstract: An acoustic pressure type sensor fabricated on a supporting substrate is disclosed. The acoustic sensor is fabricated by depositing and etching a number of thin films on the supporting substrate and by machining the supporting substrate. The resulting structure contains a pressure sensitive, electrically conductive diaphragm positioned at a distance from an electrically conductive fixed electrode. In operation, the diaphragm deflects in response to an acoustic pressure and the corresponding change of electrical capacitance between the diaphragm and the fixed electrode is detected using an electrical circuit. Two or more such acoustic sensors are combined on the same supporting substrate with an interaural flexible mechanical connection, to form a directional sensor with a small surface area.
    Type: Grant
    Filed: May 30, 2006
    Date of Patent: July 15, 2008
    Assignee: Corporation for National Research Initiatives
    Inventor: Michael Pedersen
  • Patent number: 7362873
    Abstract: An acoustic pressure type sensor fabricated on a supporting substrate is disclosed. The acoustic sensor is fabricated by depositing and etching a number of thin films on the supporting substrate and by machining the supporting substrate. The resulting structure contains a pressure sensitive, electrically conductive diaphragm positioned at a distance from an electrically conductive fixed electrode. In operation, the diaphragm deflects in response to an acoustic pressure and the corresponding change of electrical capacitance between the diaphragm and the fixed electrode is detected using an electrical circuit. Two or more such acoustic sensors are combined on the same supporting substrate with an interaural flexible mechanical connection, to form a directional sensor with a small surface area.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: April 22, 2008
    Assignee: Corporation for National Research Initiatives
    Inventor: Michael Pedersen