Patents Assigned to CVC Products, Inc.
  • Patent number: 6294836
    Abstract: A microelectronic semiconductor interconnect structure barrier and method of deposition provide improved conductive barrier material properties for high-performance device interconnects. The barrier comprises a dopant selected from the group consisting of platinum, palladium, iridium, rhodium, and tin. The barrier can comprise a refractory metal selected from the group consisting of tantalum, tungsten titanium, chromium, and cobalt, and can also comprise a third element selected from the group consisting of carbon, oxygen and nitrogen. The dopant and other barrier materials can be deposited by chemical-vapor deposition to achieve good step coverage and a relatively conformal thin film with a good nucleation surface for subsequent metallization such as copper metallization in one embodiment, the barrier suppresses diffusion of copper into other layers of the device, including the inter-metal dielectric, pre-metal dielectric, and transistor structures.
    Type: Grant
    Filed: December 22, 1998
    Date of Patent: September 25, 2001
    Assignee: CVC Products Inc.
    Inventors: Ajit P. Paranjpe, Mehrdad M. Moslehi, Randhir S. Bubber, Lino A. Velo
  • Patent number: 6274495
    Abstract: A method and system for fabricating a device on a substrate with a process gas, such as with chemical vapor deposition. A reaction chamber and support chuck cooperate to form a low conductance configuration for axisymetric process gas flow over the substrate and to form a high conductance configuration for enhanced evacuation of residual process gas from the reaction chamber upon completion of the process. A dual conductance chuck has an indented region that aligns with the exhaust port of the reaction chamber to restrict process gas flow in the low conductance configuration, and that moves distal a showerhead and the exhaust port to provide reduced restriction of process gas flow for reaction chamber evacuation. The chuck includes thermal control for enhancing film deposition on the substrate and for reducing residual film deposition on the chuck. An evacuation opening in the housing provides independent evacuation of residual gas from the housing.
    Type: Grant
    Filed: January 18, 2000
    Date of Patent: August 14, 2001
    Assignee: CVC Products, Inc.
    Inventors: Thomas R. Omstead, Panya Wongsenakhum, William J. Messner, Edward J. Nagy, William Starks, Mehrdad M. Moslehi
  • Patent number: 6245655
    Abstract: A method for selective deposition of a material, such as copper, to form planarized inlaid device interconnect structures, the method suppressing deposition of the material at other than the defined interconnect inlaid metal line trenches and via plug holes. Once a formation is filled with metallization material, deposition is automatically ceased in situ to form a globally planarized interconnect structure. In one embodiment, a blocking agent layer inhibits material nucleation and deposition at the substrate surface plane until the formation is filled, and then flows over the filled inlaid metallization structure to cease further material deposition and to form a globally planarized surface without a need for chemical-mechanical polishing of the metallization material. In another embodiment, an enhancement agent is provided within formations to reduce material nucleation time, resulting in selective deposition of the material proximate to the enhancement agent layer within trenches and holes.
    Type: Grant
    Filed: April 1, 1999
    Date of Patent: June 12, 2001
    Assignee: CVC Products, Inc.
    Inventor: Mehrdad M. Moslehi
  • Patent number: 6235164
    Abstract: A sputtering apparatus for depositing a thin film (66) of magnetic material on a substrate (26) is modified to include a plate-shaped electromagnet (34, 44, or 70) for orienting magnetic domains within the film (66). The electromagnet (34, 44, or 70) has conductive windings (38; 46, 48, and 50; or 72) that are arranged for producing a magnetic field (42 or 52) within a plane (60) corresponding to a surface of the substrate (26). Field strength vectors (68) vary in absolute magnitude between points located along a first axis (62), but have substantially uniform components of magnitude at the same points measured in a common direction along the first axis (62).
    Type: Grant
    Filed: March 18, 1999
    Date of Patent: May 22, 2001
    Assignee: CVC Products, Inc.
    Inventors: Kevin S. Gerrish, Paul H. Ballentine, Dorian Heimanson, Alan T. Stephens, II
  • Patent number: 6204204
    Abstract: A method and apparatus are disclosed for depositing a tantalum-containing diffusion barrier, such as a TaN barrier layer, by dissolving a tantalum-bearing organometallic precursor, such as PEMAT or PDEAT, in an inert, low viscosity, high molecular weight, low volatility solvent, such as octane, heptane, decane or toluene. The precursor-solvent solution is vaporized and flowed over a substrate to deposit the barrier. The precursor solution has a viscosity substantially similar to that of the solvent by maintaining the ratio of precursor to solvent at a generally low value, such as approximately 10% precursor. The boiling point of the solvent is substantially similar to the boiling point of the precursor, such as within 50% of the precursor boiling point at one atmosphere, to enhance repeatability of barrier film quality.
    Type: Grant
    Filed: April 1, 1999
    Date of Patent: March 20, 2001
    Assignee: CVC Products, Inc.
    Inventors: Ajit P. Paranjpe, Mehrdad M. Moslehi, Randhir S. Bubber, Lino A. Velo
  • Patent number: 6197166
    Abstract: A system and related method are disclosed for performing inductively-coupled-plasma-enhanced ionized physical-vapor deposition process for depositing a material layer on a work piece such as a semiconductor substrate or a thin-film head substrate. Within a PVD process chamber, a plurality of inductive antenna segments axially surround a region between the PVD target/cathode assembly and the work piece. The inductive antenna segments are arranged cylindrically around (or conformlly with respect to the physical-vapor deposition target/cathode) and aligned substantially vertically with respect to the target/cathode assembly and/or the work piece. A first radio-frequency (RF) power source provides electrical power to half of the antenna segments to create a first inductively-coupled plasma source, a second RF power source provides electrical power to the remaining antenna segments to create a second inductively-coupled-plasma source.
    Type: Grant
    Filed: December 14, 1999
    Date of Patent: March 6, 2001
    Assignee: CVC Products, Inc.
    Inventor: Mehrdad M. Moslehi
  • Patent number: 6190732
    Abstract: A method and system for fabricating a device on a substrate with a process gas, such as with chemical vapor deposition. A reaction chamber and support chuck cooperate to form a low conductance configuration for axisymetric process gas flow over the substrate and to form a high conductance configuration for enhanced evacuation of residual process gas from the reaction chamber upon completion of the process. A dual conductance chuck has an indented region that aligns with the exhaust port of the reaction chamber to restrict process gas flow in the low conductance configuration, and that moves distal a showerhead and the exhaust port to provide reduced restriction of process gas flow for reaction chamber evacuation. The chuck includes thermal control for enhancing film deposition on the substrate and for reducing residual film deposition on the chuck. An evacuation opening in the housing provides independent evacuation of residual gas from the housing.
    Type: Grant
    Filed: September 3, 1998
    Date of Patent: February 20, 2001
    Assignee: CVC Products, Inc.
    Inventors: Thomas R. Omstead, Panya Wongsenakhum, William J. Messner, Edward J. Nagy, William Starks, Mehrdad M. Moslehi
  • Patent number: 6188044
    Abstract: An apparatus and method supports thermal processing of a microelectronic device such as a semiconductor chip in a substrate by heating the substrate with secondary radiation from an energy transfer device 40, which has a first set of energy transfer regions comprised of an emissive and thermally conductive material, and a second set of thermally insulating regions comprised of a reduced emissivity and reduced thermal conductivity material or free space. A multi-zone radiant energy source 30 provides radiative energy to energy transfer device 40, with a process controller 36, preferably a multi-zone controller, altering the amount of energy provided by each heat zone associated with each emissive region of energy transfer device 40. Sensors detect the thermal energy level of each energy transfer region to allow controller 36 to adjust the secondary radiation emitted by each region in real time, resulting in a predetermined and controlled distribution of thermal energy on substrate 20.
    Type: Grant
    Filed: April 27, 1998
    Date of Patent: February 13, 2001
    Assignee: CVC Products, Inc.
    Inventors: Yong Jin Lee, Mehrdad M. Moslehi, Jalil Kamali, Sergey Belikov
  • Patent number: 6138745
    Abstract: A chuck having two distinct portions mounts a substrate within a vacuum processing chamber. A first sealing stage confines a gas within a heat-transfer interface between one portion of the chuck and the substrate. A second sealing stage collects gas escaping from the heat-transfer interface within an intermediate space bounded by the two portions of the chuck and the substrate. Pressure in the intermediate space is reduced with respect to pressure at the heat-transfer interface to inhibit leakage of gas from the heat-transfer interface into the vacuum processing chamber.
    Type: Grant
    Filed: September 26, 1997
    Date of Patent: October 31, 2000
    Assignee: CVC Products, Inc.
    Inventor: Mehrdad M. Moslehi
  • Patent number: 6136165
    Abstract: A system and related method are disclosed for performing inductively-coupled-plasma-enhanced ionized physical-vapor deposition process for depositing a material layer on a work piece such as a semiconductor substrate or a thin-film head substrate. Within a PVD process chamber, a plurality of inductive antenna segments axially surround a region between the PVD target/cathode assembly and the work piece. The inductive antenna segments are arranged cylindrically around (or conformlly with respect to the physical-vapor deposition target/cathode) and aligned substantially vertically with respect to the target/cathode assembly and/or the work piece. A first radio-frequency (RF) power source provides electrical power to half of the antenna segments to create a first inductively-coupled plasma source, a second RF power source provides electrical power to the remaining antenna segments to create a second inductively-coupled-plasma source.
    Type: Grant
    Filed: November 26, 1997
    Date of Patent: October 24, 2000
    Assignee: CVC Products, Inc.
    Inventor: Mehrdad M. Moslehi
  • Patent number: 6132805
    Abstract: A shutter assembly located substantially within a thin-film processing chamber includes a plurality of articulatable components that are movable between open and closed positions within the chamber. The articulatable components are preferably arranged in the form of an iris to regulate a size of an opening centered along said central axis. The shutter assembly can be used to isolate transmissions between a process energy source such as a PVD target and a substrate or to limit a range of incidence angles at which the transmissions reach the substrate. The shutter apparatus of this invention does not add any area to the footprint of processing equipment, enables very fast shuttering between open and closed positions, and enables enhanced process control.
    Type: Grant
    Filed: October 20, 1998
    Date of Patent: October 17, 2000
    Assignee: CVC Products, Inc.
    Inventor: Mehrdad M. Moslehi
  • Patent number: 6126790
    Abstract: An electromagnet assembly magnetically orients a thin magnetic film deposited onto a surface of a substrate. The magnetic orientation can take place in a low-pressure processing environment such as during the deposition of the thin magnetic film or during a subsequent operation such as annealing. The electromagnet assembly includes a plate-shaped core located adjacent to the substrate and two or more electromagnetic coils that are wrapped in different directions around the core. Electrical currents conveyed through the electromagnetic coils are controlled for orienting a substantially uniaxial magnetic field throughout a range of angular positions in a plane of the substrate surface.
    Type: Grant
    Filed: February 7, 2000
    Date of Patent: October 3, 2000
    Assignee: CVC Products, Inc.
    Inventors: Mehrdad M. Moslehi, Shiyuan Cheng, Cecil J. Davis, Dorian Heimanson
  • Patent number: 6106682
    Abstract: An electromagnet having one or more coils wrapped around a plate-shaped core produces a uniaxial magnetic filed in the vicinity of a substrate surface for orienting a magnetic film deposited onto the substrate surface. Variations in the magnetic mass of the plate-shaped core or in the magnetic permeability of the core mass are made to reduce angular skew and to improve uniformity of the uniaxial magnetic field. The variations generally involve a reduction in magnetic mass or permeability near a center of the core with respect to a periphery of the core. Cavities of various sizes and shapes but having symmetry with a magnetic axis can be formed in the core for this purpose.
    Type: Grant
    Filed: May 22, 1998
    Date of Patent: August 22, 2000
    Assignee: CVC Products, Inc.
    Inventors: Mehrdad M. Moslehi, Shiyuan Cheng, Xiangqun Chen, Cecil J. Davis
  • Patent number: 6073576
    Abstract: A low-pressure processor for processing substrates includes a chuck that engages the substrates' peripheries for purposes of clamping, sealing, and centering the substrates on chuck bodies. For accomplishing all three purposes, a mechanical clamp can be arranged with two sealing regions. One of the sealing regions seals the clamp to a chuck body or an extension of the chuck body, and another of the sealing regions engages a peripheral edge surface of a substrate for sealing the clamp to the substrate. The second sealing region includes an inclined seating surface that engages a front edge of the substrate's peripheral edge surface and divides a clamping force into a first component that presses the substrate against the chuck body and a second component that centers the substrate on the chuck body.
    Type: Grant
    Filed: November 25, 1997
    Date of Patent: June 13, 2000
    Assignee: CVC Products, Inc.
    Inventors: Mehrdad M. Moslehi, Cecil J. Davis
  • Patent number: 6051113
    Abstract: An apparatus and method for depositing plural layers of materials on a substrate within a single vacuum chamber allows high-throughput deposition of structures such as those for GMR and MRAM application. An indexing mechanism aligns a substrate with each of plural targets according to the sequence of the layers in the structure. Each target deposits material using a static physical-vapor deposition technique. A shutter can be interposed between a target and a substrate to block the deposition process for improved deposition control. The shutter can also preclean a target or the substrate and can also be used for mechanical chopping of the deposition process. In alternative embodiments, plural substrates may be aligned sequentially with plural targets to allow simultaneous deposition of plural structures within the single vacuum chamber.
    Type: Grant
    Filed: May 20, 1998
    Date of Patent: April 18, 2000
    Assignee: CVC Products, Inc.
    Inventor: Mehrdad M. Moslehi
  • Patent number: 6048162
    Abstract: A robotic wafer handler is mounted on a central platform of a cluster tool for transporting wafers between loading and processing stations. The wafer handler includes a main arm that is rotatable around a vertical axis, translatable along the vertical axis, and translatable along a horizontal axis that rotates with the main arm around the vertical axis. An auxiliary arm is translatable along the horizontal axis relative to the main arm between extended and retracted positions. In the extended position, an end effector of the auxiliary arm is aligned with an end effector of the main arm for retrieving or replacing wafers with the auxiliary arm. In the retracted position, the end effector of the auxiliary arm is withdrawn for retrieving or replacing wafers with the main arm.
    Type: Grant
    Filed: August 27, 1998
    Date of Patent: April 11, 2000
    Assignee: CVC Products, Inc.
    Inventor: Mehrdad M. Moslehi
  • Patent number: 6042707
    Abstract: An electromagnet assembly magnetically orients a thin magnetic film deposited onto a surface of a substrate. The magnetic orientation can take place in a low-pressure processing environment such as during the deposition of the thin magnetic film or during a subsequent operation such as annealing. The electromagnet assembly includes a plate-shaped core located adjacent to the substrate and two or more electromagnetic coils that are wrapped in different directions around the core. Electrical currents conveyed through the electromagnetic coils are controlled for orienting a substantially uniaxial magnetic field throughout a range of angular positions in a plane of the substrate surface.
    Type: Grant
    Filed: May 22, 1998
    Date of Patent: March 28, 2000
    Assignee: CVC Products, Inc.
    Inventors: Mehrdad M. Moslehi, Shiyuan Cheng, Cecil J. Davis, Dorian Heimanson
  • Patent number: 6039848
    Abstract: A magnetron sputtering system is provided that uses a backing plate assembly having an insulating spacer ring coupled between and hermetically sealed to the backing plate and an extender ring. The insulating spacer ring can be constructed from a ceramic material, and the extender ring can be constructed from a metal material. The use of this backing plate assembly allows the backing plate assembly to be coupled directly to the chamber walls with a metal-to-metal contact, while the backing plate remains electrically isolated from the chamber walls. This allows the sealing of a vacuum chamber in the magnetron sputtering system using a seal suitable for creating an ultra-high vacuum in the vacuum chamber.
    Type: Grant
    Filed: October 27, 1997
    Date of Patent: March 21, 2000
    Assignee: CVC Products, Inc.
    Inventors: Mehrdad M. Moslehi, Cecil J. Davis, Dorian Heimanson
  • Patent number: 6004029
    Abstract: This invention presents an automatic calibration system and method for calibration of a substrate temperature sensor in a thermal processing equipment, such as a rapid thermal processing system. The calibration system includes a temperature-sensitive probe associated with the substrate temperature sensor to calibrate the substrate temperature sensor and an actuator to position the temperature-sensitive probe relative to the substrate during a calibration cycle. The actuator and temperature-sensitive probe of the automatic calibration system can be incorporated into the thermal processing equipment in order to maintain the thermal processing equipment cleanliness and integrity during a calibration cycle, and to allow rapid automated calibration. In the preferred embodiment of this invention, the temperature-sensitive probe and its actuator are implemented in the gas showerhead assembly of a rapid thermal processing system.
    Type: Grant
    Filed: July 10, 1996
    Date of Patent: December 21, 1999
    Assignee: CVC Products, Inc.
    Inventors: Mehrdad M. Moslehi, Yong Jin Lee
  • Patent number: 5976261
    Abstract: A method and apparatus for multi-zone injection apparatus of multiple process gases onto a work piece during manufacture. The multi-zone injection apparatus uses a gas injection plate with multiple injection zones to deliver the multiple process gases into the chamber for deposition onto the work piece (for example, a silicon wafer). The gas showerhead separates the multiple process in a manner that avoids premixing the process gases, thereby minimizing gas-phase nucleation and particulate generation. The showerhead also allows real-time independent control over the gas flow rates in N channels to achieve deposition uniformity. Different gases can be configured in adjacent channels to provide M zones of multi-gas radial control.
    Type: Grant
    Filed: July 11, 1996
    Date of Patent: November 2, 1999
    Assignee: CVC Products, Inc.
    Inventors: Mehrdad M. Moslehi, Yong Jin Lee, Ahmad Kermani