Patents Assigned to ExxonMobil Research and Engineering Company
  • Patent number: 11198825
    Abstract: Systems and methods are provided to allow for characterization of feeds, intermediate effluents, and/or products during lubricant base stock production. More generally, the systems and methods can allow for characterization of aromatics in various types of hydroprocessed intermediate effluents and/or products. In some aspects, the characterization can include measuring a fluorescence excitation-emission matrix spectrum for a sample, and then generating a representation of the spectrum by fitting the measured spectrum to a linear combination of spectra corresponding to compounds or compound classes. As the hydroprocessing process continues, additional measured spectra and comparing the fit quality of the representation to the subsequently measured spectra. When the fit quality falls below a threshold value, the loss in fit quality indicates a change in the number and/or distribution of aromatics in the sample.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: December 14, 2021
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: David L. Perkins, Jason M. McMullan, Kendall S. Fruchey
  • Patent number: 11198109
    Abstract: The disclosure generally relates to CCS sorbents, particularly for CO2/H2O displacement desorption process. The sorbents include an aluminum oxide support that includes two alkali metal salts impregnated on the support. The two alkali metals include a potassium metal salts and a second alkali metal salt which is not potassium. The second metal salt disrupts poisoning effects that degrade sorbent lifetime. The sorbents demonstrate improved CO2 loadings and better H2O/CO2 ratios, as well as improved stability. Compositions and methods of making are disclosed.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: December 14, 2021
    Assignees: ExxonMobil Research and Engineering Company, TDA Research, Inc.
    Inventors: Chuansheng Bai, Majosefina Cunningham, Patrick P. McCall, Hans Thomann, Jeannine Elizabeth Elliott, Vinh Nguyen
  • Patent number: 11199526
    Abstract: Systems and methods are provided for determining a content of a hydrocarbon or other compound, such as a C3 to C7 hydrocarbon, in a condensed steam sample. Cooled steam condensate can be flowed through a sample chamber including an inner overflow tube. When the flow stops, water can be drained from the sample chamber, and then the sample chamber can be opened to allow fluid communication with a vapor chamber above the sample chamber. This can allow hydrocarbons in the condensed steam (and/or other gas) to be transferred from the sample chamber into the vapor chamber. The vapor chamber can then be isolated from the sample chamber. At least a portion of the content of the vapor chamber can then be passed to a detection volume, such as the characterization cell for a gas chromatography system.
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: December 14, 2021
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Randall S. Lachine, Raymond J. Henry
  • Patent number: 11198115
    Abstract: Methods are provided for forming noble metal catalysts comprising both platinum and a second Group VIII metal, such as palladium, with improved aromatic saturation activity. Instead of impregnating a catalyst with both platinum and another Group VIII metal at the same time, a sequential impregnation can be used, with the Group VIII metal being impregnated prior to platinum. It has been discovered that by forming a Group VIII metal-impregnated catalyst first, and then impregnating with platinum, the distribution of platinum throughout the catalyst can be improved. The improved distribution of platinum can result in a catalyst with enhanced aromatic saturation activity relative to a catalyst with a similar composition formed by simultaneous impregnation.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: December 14, 2021
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Matthew S. Ide, Stephen J. McCarthy, Gary P. Schleicher
  • Patent number: 11198822
    Abstract: In an embodiment, a process for converting a hydrocarbon feed includes introducing a hydrocarbon feed comprising a C2-C50 acyclic alkane and a C3-C50 cyclic alkane to a catalyst composition in a reactor. The process further includes converting the hydrocarbon feed in the reactor under reactor conditions to a product mixture comprising at least one of a C6-C9 aromatic product or a C12+ distillate product.
    Type: Grant
    Filed: March 30, 2020
    Date of Patent: December 14, 2021
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Kun Wang, Jonathan E. Mitchell
  • Patent number: 11198827
    Abstract: Systems and methods are provided for performing solvent dewaxing using a dewaxing solvent that is not fully miscible with the feed being dewaxed. It has been unexpectedly discovered that by operating with a ketone solvent mixture that is beyond the miscibility limit by a small amount, the rate of solvent dewaxing can be substantially increased. Additionally, the difference between the filtration temperature during solvent dewaxing and the pour point of the resulting dewaxed product is unexpectedly reduced. The dewaxing solvent beyond the miscibility limit can correspond to, for example, a solvent mixture where the weight percent of methyl ethyl ketone is beyond the miscibility limit by 0.1 vol % to 5.0 vol %.
    Type: Grant
    Filed: February 5, 2020
    Date of Patent: December 14, 2021
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Ilona Molotoka, James W. Gleeson, Joshua J. Matthews, Kristen L. Sullivan, Jude J. Eziashi, David Killgore, Jon D. Lachapelle, Gaither M. Phillips
  • Patent number: 11193079
    Abstract: Compositions include ether ester compounds derived from neo-acids, lubricating oil base stocks containing such ester compounds, and lubricating oil compositions containing such ester compounds. Methods can include making and formulating compositions containing ether ester compounds derived from neo-acids.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: December 7, 2021
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Abhimanyu O. Patil, Satish Bodige, Kyle G. Lewis
  • Patent number: 11186788
    Abstract: Disclosed are methods and apparatuses for separating a wax product from a hydrocarbon feedstream by a) conducting a hydrocarbon feedstream to a membrane separation zone; b) retrieving at least one retentate product stream from the first side of the membrane element; c) retrieving at least one permeate product stream having a wax phase and an oil phase from a second side of the membrane element, wherein a pour point of the wax phase of the permeate product stream is higher than a pour point of the oil phase of permeate product stream; and d) separating a wax product from the wax phase of the permeate product stream.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: November 30, 2021
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Benjamin A. McCool, Yogesh V. Joshi, Dhaval A. Bhandari, Roberto Garcia, Randall D. Partridge
  • Patent number: 11188047
    Abstract: Systems and methods are provided for detecting events in industrial processes. An acquisition system may include one of a camera and an audio recorder to acquire monitoring data in the form of one of imaging data and acoustic data, respectively. A computer system, may include a machine learning engine and may be programmed to classify the monitoring data under a classifier, quantify, based on the classifier, the monitoring data with at least one quantifier, and detect an event when the at least one quantifier satisfies a predetermined rule corresponding to the at least one quantifier.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: November 30, 2021
    Assignee: ExxonMobil Research and Engineering Company
    Inventor: Christopher S. Gurciullo
  • Patent number: 11185813
    Abstract: A process for selectively separating H2S from a gas mixture which also comprises CO2 is disclosed. A stream of the gas mixture is contacted with an absorbent solution comprising one or more amines, alkanolamines, hindered alkanolamines, capped alkanolamines, or mixtures thereof. The H2S/CO2 selectivity of the absorbent solution is preferably greater than about 4.0 for an acid gas loading [mol(CO2+H2S)/mol(amine)] between about 0.2 and about 0.6, and is achieved by reducing pH of the absorbent solution.
    Type: Grant
    Filed: April 17, 2018
    Date of Patent: November 30, 2021
    Assignees: ExxonMobil Research and Engineering Company, BASF
    Inventors: Carla S. Pereira, Michael Siskin, Thomas Ingram, Gerald Vorberg, Martin Ernst
  • Patent number: 11186787
    Abstract: A base stock having at least 90 wt. % saturates, an amount and distribution of aromatics, as determined by ultra violet (UV) spectroscopy, including an absorptivity between 280 and 320 nm of less than 0.015 l/gm-cm, a viscosity index (VI) from 80 to 120, and having a cycloparaffin performance ratio greater than 1.05 and a kinematic viscosity at 100° C. between 4 and 6 cSt. A base stock having at least 90 wt. % saturates, an amount and distribution of aromatics, as determined by UV spectroscopy, including an absorptivity between 280 and 320 nm of less than 0.020 l/gm-cm, a viscosity index (VI) from 80 to 120, and having a cycloparaffin performance ratio greater than 1.05 and a kinematic viscosity at 100° C. between 10 and 14 cSt. A lubricating oil having the base stock as a major component, and one or more additives as a minor component. Methods for improving oxidation performance and low temperature performance of formulated lubricant compositions through the compositionally advantaged base stock.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: November 30, 2021
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Rugved P. Pathare, Lisa I-Ching Yeh, Yogi V. Shukla, Charles L. Baker, Jr., Bryan E. Hagee, Debra A. Sysyn, Kendall S. Fruchey
  • Patent number: 11173446
    Abstract: In a process for removal of acid gases from a fluid stream the fluid stream is contacted with an absorbent to obtain a treated fluid stream and a laden absorbent. The absorbent comprises a diluent and a compound of the general formula (I) wherein R1 is C1-C3-alkyl; R2 is C1-C3-alkyl; R3 is selected from hydrogen and C1-C3-alkyl; and R4 is selected from hydrogen and C1-C3-alkyl.
    Type: Grant
    Filed: February 9, 2018
    Date of Patent: November 16, 2021
    Assignees: BASF SE, ExxonMobil Research and Engineering Company
    Inventors: Thomas Ingram, Martin Ernst, Gerald Vorberg, Alexander Panchenko, Sophia Ebert, Thomas Wesley Holcombe, Michael Siskin, Carla Pereira, Georg Sieder
  • Patent number: 11173419
    Abstract: A crude oil desalter unit includes a settler, an inlet manifold fluidly coupled to the settler, and one or more inlet distributors extending from the inlet manifold to discharge a water-in-oil emulsion into the settler. Each inlet distributor includes a riser having a first end, a second end, and an inner flowpath extending between the first and second ends, wherein the riser is coupled to the inlet manifold at the first end, one or more outlet nozzles provided at the second end and in fluid communication with the inner flowpath, and a static mixer positioned within the inner flowpath and defining one or more helical pathways operable to induce rotational flow to a fluid flowing within the inner flowpath.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: November 16, 2021
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Sandipan K. Das, Andrew P. Sullivan, Magaly C. Barroeta
  • Publication number: 20210346875
    Abstract: Catalytic compositions and sequential catalytic methods are generally described. in some embodiments, a composition comprises a first catalyst comprising a Cu-modified zeolite, and a second catalyst capable of a coupling reaction between (a) an intermediate resulting from a reaction of a reactant at the first catalyst, and (b) a co-reagent, wherein a rate of diffusion of the co-reagent within one or more cages and/or pores of the first catalyst is lower than a rate of diffusion of the intermediate within the one or more cages and/or pores of the first catalyst.
    Type: Application
    Filed: March 30, 2021
    Publication date: November 11, 2021
    Applicants: Massachusetts Institute of Technology, ExxonMobil Research and Engineering Company
    Inventors: Yuriy Román-Leshkov, Randall J. Meyer, Pedro M. Serna Merino, Mark Sullivan, Kimberly Dinh
  • Patent number: 11161073
    Abstract: Processes for separating carbon dioxide from a gas mixture that comprises CO2 and N2 that are based upon formation of gas hydrates, and systems useful for implementing such processes, are disclosed.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: November 2, 2021
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Matthew S. Mettler, Ashish B. Mhadeshwar, Rustom M. Billimoria
  • Patent number: 11155905
    Abstract: Improved steel compositions and methods of making the same are provided. The present disclosure provides advantageous wear resistant steel. More particularly, the present disclosure provides high manganese (Mn) steel having enhanced wear resistance, and methods for fabricating high manganese steel compositions having enhanced wear resistance. The advantageous steel compositions/components of the present disclosure improve one or more of the following properties: wear resistance, ductility, crack resistance, erosion resistance, fatigue life, surface hardness, stress corrosion resistance, fatigue resistance, and/or environmental cracking resistance. In general, the present disclosure provides high manganese steels tailored to resist wear and/or erosion.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: October 26, 2021
    Assignees: ExxonMobil Research and Engineering Company, POSCO
    Inventors: Hyunwoo Jin, Ning Ma, Raghavan Ayer, Russell Robert Mueller, Hak-Cheol Lee, Jong-Kyo Choi, In-Shik Suh
  • Patent number: 11136516
    Abstract: Provided are octane enhancing additives and methods that improve a liquid fuel composition's octane rating. A liquid fuel composition may comprise a liquid fuel and an octane enhancing additive. The octane enhancing additive may comprise an indoline compound with a bicyclic ring structure, wherein the indoline compound comprises a six-membered aromatic ring and a five-membered aliphatic ring that share a carbon-carbon aromatic bond. The five-membered aliphatic ring may be heterocyclic and may comprise a nitrogen positioned in an alpha position to the six-membered aromatic ring.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: October 5, 2021
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: David J. Abdallah, Krystal B. Wrigley
  • Patent number: 11136279
    Abstract: This application relates to transfer hydrogenation between light alkanes and olefins, and, more particularly, embodiments related to an integrated olefin production system and process which can produce higher carbon number olefins from corresponding alkanes. Examples methods may include reacting at least a portion of the ethylene and the at least one alkane via transfer hydrogenation to produce at least a mixed product stream comprising generated ethane from at least a portion of the ethylene, unreacted ethylene, and an olefin corresponding to the at least one alkane.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: October 5, 2021
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Aaron Sattler, Michele Paccagnini, Kun Wang, Henry K. Klutse, Brian M. Weiss
  • Patent number: 11130915
    Abstract: Methanol-to-gasoline (MTG) conversion may be performed with forward methanol processing. Methanol may be fed to a first reactor where it may be catalytically converted under dimethyl ether formation conditions in the presence of a first catalyst to form a product mixture comprising dimethyl ether (DME), methanol, and water. The DME may be separated from the methanol and the water and delivered to a second reactor. In the second reactor, the DME may be catalytically converted under MTG conversion conditions in the presence of a second catalyst to form a second product mixture comprising gasoline hydrocarbons and light hydrocarbon gas. The methanol and the water from the first reactor may be separated further to obtain substantially water-free methanol, which may be delivered to the second reactor. The separation of methanol from the water may be performed using the light hydrocarbon gas to effect stripping of the methanol.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: September 28, 2021
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Mohsen N. Harandi, Suriyanarayanan Rajagopalan, David W. Staubs, Terry E. Helton, Mitch L. Hindman
  • Patent number: 11130204
    Abstract: The present disclosure relates to a welding composition for joining high manganese steel base metals to low carbon steel base metals, as well as systems and methods for the same. The composition includes: carbon in a range of about 0.1 wt % to about 0.4 wt %; manganese in a range of about 15 wt % to about 25 wt %; chromium in a range of about 2.0 wt % to about 8.0 wt %; molybdenum in an amount of ? about 2.0 wt %; nickel in an amount of ? about 10 wt %; silicon in an amount of ? about 0.7 wt %; sulfur in an amount of ? about 100 ppm; phosphorus in an amount of ? about 200 ppm; and a balance comprising iron. In an embodiment, the composition has an austenitic microstructure.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: September 28, 2021
    Assignees: ExxonMobil Research and Engineering Company, Poseo
    Inventors: Andrew J. Wasson, Douglas P. Fairchild, HyunWoo Jin, Xin Yue, IlWook Han, Sangchul Lee, Bongkeun Lee, Jongsub Lee