Patents Assigned to ExxonMobil Research and Engineering Company
  • Patent number: 10883088
    Abstract: Oxygenases and methods of biologically upgrading hydrocarbon streams, such as crude oil, using oxygenases are provided herein. The oxygenases can be used to remove impurities such as metals, heteroatoms, or asphaltenes from a hydrocarbon stream. In some cases, the oxygenases can be chemically or genetically modified and can be used in different locations such as petroleum wells, pipes, reservoirs, tanks and/or reactors.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: January 5, 2021
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Zarath M. Summers, David O. Marler, Jay B. Patel, Katherine G. Landuyt
  • Patent number: 10883965
    Abstract: For method of utilizing a nondestructive evaluation method to inspect a steel material comprising at least one hysteretic ferromagnetic material and/or at least one nonhysteretic material to identify one or more material conditions and/or one or more inhomogeneities in steel material, the method can comprise the steps of: interrogating the hysteretic ferromagnetic material and/or the nonhysteretic material with an input time varying magnetic field; scanning the steel material and detecting a magnetic response and/or acoustic response over time from the hysteretic ferromagnetic material and/or the nonhysteretic material; determining a time dependent nonlinear characteristic of the received magnetic response and/or acoustic response; and correlating the time dependent nonlinear characteristic of the received magnetic response and/or acoustic response to the one or more material conditions and/or one or more inhomogeneities in steel material.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: January 5, 2021
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Lang Feng, Qiuzi Li, Harry W. Deckman, Paul M. Chaikin, Neeraj S. Thirumalai, Shiun Ling, Joseph W. Krynicki, Jamey A. Fenske
  • Patent number: 10883039
    Abstract: Viscous aqueous injections fluids including polymers having hydrophilic moieties and hydrophobic groups and at least one of crude oil emulsions and amphiphilic diblock copolymers are provided herein. Methods of making the aqueous injection fluids, and methods of using the aqueous injection fluids for oil recovery are also provided.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: January 5, 2021
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Aditya Jaishankar, Mohsen S. Yeganeh, Alex G. K. Lee, Daniel P. Cherney, Mobae Afeworki, Sartaj S. Ghai
  • Patent number: 10870806
    Abstract: Systems and methods are provided for upgrading a mixture of catalytic slurry oil and coker bottoms by hydroprocessing. Optionally, the upgrading can further include deasphalting the mixture of catalytic slurry oil and coker bottoms to form a deasphalted oil and a deasphalter residue or rock fraction. The mixture of catalytic slurry oil and coker bottoms and/or the deasphalted oil can then be hydroprocessed to form an upgraded effluent that includes fuels boiling range products. Optionally, in some aspects where the feed mixture is deasphalted prior to hydroprocessing, the feed mixture can further include a portion of a (sour) vacuum resid.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: December 22, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stephen H. Brown, Brian A. Cunningham, Randolph J. Smiley, Samia Ilias, Brenda A. Raich, Tien V. Le
  • Patent number: 10865354
    Abstract: Marine gas oil compositions corresponding to fuels and/or fuel blending components are provided that can provide improved friction properties within an engine. Addition of lubricant base stock to a marine gas oil composition can reduce frictional losses within an engine during operation. The benefits in reduction of frictional losses can be observed based on the difference between the indicated mean effective pressure and the actual work delivered by an engine, where the difference corresponds to the frictional mean effective pressure.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: December 15, 2020
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Aditya S. Shetkar, Kenneth C. H. Kar, Scott K. Berkhous
  • Patent number: 10865352
    Abstract: Adsorbents for aromatic adsorption are used to improve one or more properties of base stocks derived from deasphalted oil fractions. The adsorbents can allow for removal of polynuclear aromatics from an intermediate effluent or final effluent during base stock production. Removal of polynuclear aromatics can be beneficial for improving the color of heavy neutral base stocks and/or reducing the turbidity of bright stocks.
    Type: Grant
    Filed: February 18, 2019
    Date of Patent: December 15, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: William R. Gunther, Kendall S. Fruchey, Vinit Choudhary, Adrienne R. Diebold, Jason M. McMullan
  • Patent number: 10866228
    Abstract: Methods are provided for predicting the properties of an asphalt emulsion, such as an asphalt emulsion that contains an asphalt fraction derived from a plurality of crude oils. Corresponding tools are provided to allow for visualization of the predicted asphalt emulsion properties. The properties of the asphalt components in an asphalt fraction for forming an emulsion can be represented based on using a simplified functional form to represent each emulsion property of each asphalt component. The emulsion properties of an asphalt fraction, composed of a plurality of asphalt components, can be modeled based on a linear combination of the emulsion properties of the asphalt components.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: December 15, 2020
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventor: Nadjib Boussad
  • Patent number: 10858602
    Abstract: Compositions corresponding to marine diesel fuels, fuel oils, jet fuels, and/or blending components thereof are provided that include at least a portion of a natural gas condensate fraction. Natural gas condensate fractions derived from a natural gas condensate with sufficiently low API gravity can provide a source of low sulfur, low pour point blend stock for formation of marine diesel and/or fuel oil fractions. Natural gas condensate fractions can provide these advantages and/or other advantages without requiring prior hydroprocessing and/or cracking.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: December 8, 2020
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Scott K. Berkhous, Sheryl B. Rubin-Pitel, Kenneth C. H. Kar
  • Patent number: 10858298
    Abstract: This disclosure relates to the preparation of diphenyl compounds, especially dimethylbiphenyl compounds, in which there is one methyl group on each ring, and their oxidized analogues. These compounds, and particularly alkylated biphenyl compounds and biphenylcarboxylic acids, alcohols and esters, are useful intermediates in the production of a variety of commercially valuable products, including polyesters and plasticizers for PVC and other polymer compositions.
    Type: Grant
    Filed: March 27, 2019
    Date of Patent: December 8, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Aaron Sattler, Victor DeFlorio, Michele L. Paccagnini, Allen W. Burton
  • Patent number: 10858599
    Abstract: Systems and a method for manufacturing a base stock from a hydrocarbon stream are provided. An example method includes cracking the hydrocarbon stream to form a raw hydrocarbon stream, separating an ethylene stream from the raw hydrocarbon stream and oligomerizing the ethylene stream to form a raw oligomer stream. A light olefinic stream is distilled from the raw oligomer stream and linear alpha olefins are recovered from the light olefinic stream. A heavy olefinic stream is distilled from the raw oligomer stream. The heavy olefinic stream is hydro-processed to form a hydro-processed stream. The hydro-processed stream is distilled to form the base stock.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: December 8, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Suzzy C. Ho, Guang Cao, Matthew S. Ide, Shifang Luo, William R. Gunther, Jo Ann M. Canich
  • Patent number: 10858600
    Abstract: Systems and a method for manufacturing a base stock from a light gas stream are provided. An example method includes oxidizing the light gas stream to form a raw ethylene stream. Water is removed from the raw ethylene stream, and carbon monoxide in the raw ethylene stream is oxidized. Carbon dioxide is separated from the raw ethylene stream, and the raw ethylene stream is oligomerized to form a raw oligomer stream. A light olefinic stream is distilled from the raw oligomer stream and a light alpha olefin is recovered from the light olefinic stream. A heavy olefinic stream is distilled from the raw oligomer stream. The heavy olefinic stream is hydro-processed to form a hydro-processed stream. the hydro-processed stream is distilled to form the base stock.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: December 8, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Guang Cao, Jihad M. Dakka, Suzzy C. Ho, Brian M. Weiss
  • Patent number: 10858603
    Abstract: Compositions corresponding to marine diesel fuels, fuel oils, jet fuels, and/or blending components thereof are provided that include at least a portion of a natural gas condensate fraction. Natural gas condensate fractions derived from a natural gas condensate with sufficiently low API gravity can provide a source of low sulfur, low pour point blend stock for formation of marine diesel and/or fuel oil fractions. Natural gas condensate fractions can provide these advantages and/or other advantages without requiring prior hydroprocessing and/or cracking.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: December 8, 2020
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Scott K. Berkhous, Sheryl B. Rubin-Pitel, Kenneth C. H. Kar
  • Patent number: 10851036
    Abstract: Systems and methods are provided for direct methane conversion to methanol. The methods can include exposing methane to an oxidant, such as O2, in a solvent at conditions that are substantially supercritical for the solvent while having a temperature of about 310° C. or less, or about 300° C. or less, or about 290° C. or less. The solvent can correspond to an electron donor solvent that, when in a supercritical state, can complex with O2. By forming a complex with the O2, the supercritical electron donor solvent can facilitate conversion of methane to methanol at short residence times while reducing or minimizing further oxidation of the methanol to other products.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: December 1, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Partha Nandi, Steven L. Suib, Sumathy Raman
  • Patent number: 10844306
    Abstract: Provided is a lubricating oil composition, which has low viscosity but also prolonged anti-shudder life without reduction of intermetallic friction coefficient. The lubricating oil composition is characterized in comprising (A) a lubricating base oil, and (C) (C-1) a borated succinimide compound with a mass average molecular weight of 4,000-7,000 and (C-2) a borated succinimide compound with a mass average molecular weight of greater than 7,000-10,000.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: November 24, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Takafumi Mori, Takehisa Sato, Takahiro Fukumizu, Masashi Ogawa, Junichi Nishinosono
  • Patent number: 10845356
    Abstract: Systems and methods are provided for estimating the total base number of used oil in an engine. The systems and methods can involve characterizing the sulfur content and at least one other element content of the oil both before introduction into the engine and after passing through an engine cylinder during combustion. Depending on the aspect, a total base number of the oil prior to use can also be measured, or the total base number before use can be estimated based on the at least one element content.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: November 24, 2020
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Gary Christensen, Nabila Brabez, Willie A. Givens, Jr., Kevin L. Crouthamel, Andrew D. Satterfield
  • Patent number: 10843980
    Abstract: Methods and a system for manufacturing a base stock from an ethanol stream are provided. An example method includes dehydrating an ethanol stream to form an impure ethylene stream, recovering an ethylene stream from the impure ethylene stream, and oligomerizing the ethylene stream to form a raw oligomer stream. A light olefinic stream is distilled from the raw oligomer stream and blended with the ethylene stream prior to the oligomerization. A heavy olefinic stream is distilled from the raw oligomer stream and hydro-processed to form a hydro-processed stream. The hydro-processed stream is distilled to form the base stock.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: November 24, 2020
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Guang Cao, Suzzy C. Ho, Matthew S. Ide, Shifang L. Luo, William R. Gunther
  • Patent number: 10836970
    Abstract: Methods for making marine fuel oil compositions and/or marine gas oil compositions are provided. The fuel oil compositions can include a distillate fraction having a sulfur content of 0.40 wt % or more and a resid fraction having a sulfur content of 0.35 wt % or less. The distillate fraction can also have a suitable content of aromatics and/or suitable combined content of aromatics and naphthenes. The distillate fraction, optionally blended with a low sulfur distillate fraction, can be used as a gas oil fuel or fuel blending component. Using a distillate fraction with an elevated sulfur content and aromatics content as a blend component for forming a fuel oil can result in a marine fuel oil with improved compatibility for blending with other conventional marine fuel oil fractions.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: November 17, 2020
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Scott K. Berkhous, Erin R. Fruchey, Kenneth C. H. Kar, Sheryl B. Rubin-Pitel
  • Patent number: 10829708
    Abstract: A method for preventing or reducing engine knock or pre-ignition in a high compression spark ignition engine with relatively high oil consumption, lubricated with a lubricating oil by using as the lubricating oil a formulated oil. The formulated oil has a composition that contains a lubricating oil base stock comprising at least one ester including at least one group selected from the group consisting of Formula (1), Formula (2), Formula (3) and Formula (4) below or at least one ester having at least 25% of its carbons in the form of methyl groups: The lubricating oils of this disclosure are useful as passenger vehicle engine oil (PVEO) products.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: November 10, 2020
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Zhisheng Gao, Eugine Choi, Luca Salvi, Matthew W. Boland
  • Patent number: 10823701
    Abstract: A method for determining one or more material conditions of a hysteretic ferromagnetic material and/or a nonhysteretic material can include interrogating the hysteretic ferromagnetic material and/or the nonhysteretic material with an input time varying magnetic field and detecting a magnetic response and/or acoustic response over time from the hysteretic ferromagnetic material and/or the nonhysteretic material. The method can also include determining a time dependent nonlinear characteristic of the received magnetic response and/or acoustic response and correlating the time dependent nonlinear characteristic of the received magnetic response or acoustic response to one or more material conditions of the material.
    Type: Grant
    Filed: October 19, 2018
    Date of Patent: November 3, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Lang Feng, Qiuzi Li, Harry W. Deckman, Paul M. Chaikin, Neeraj S. Thirumalai, Shiun Ling
  • Patent number: 10821393
    Abstract: A system and method for separating and/or purification of CO2 gas from a CO2 feed stream is described. The system and method include a plurality of fixed sorbent beds, adsorption zones and desorption zones, where the sorbent beds are connected via valve and lines to create a simulated moving bed system, where the sorbent beds move from one adsorption position to another adsorption position, and then into one regeneration position to another regeneration position, and optionally back to an adsorption position. The system and method operate by concentration swing adsorption/desorption and by adsorptive/desorptive displacement.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: November 3, 2020
    Assignees: Exxonmobil Research and Engineering Company, TDA Research, Inc.
    Inventors: Jeannine Elizabeth Elliott, Robert James Copeland, Jeff Lind, Daniel P. Leta, Patrick P. McCall