Patents Assigned to Fairfield Industries, Inc.
  • Patent number: 11360229
    Abstract: The present disclosure relates to a method of processing seismic signals comprising: receiving a set of seismic signals, applying a wavelet transformation to the set of signals and generating transformed signals across a plurality of scales. Then for each scale determining coherence information indicative of the transformed signals and generating a comparison matrix comparing the transformed signals, then outputting seismic attribute information based on combined coherence information.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: June 14, 2022
    Assignee: FAIRFIELD INDUSTRIES, INC.
    Inventor: Adam Gersztenkorn
  • Patent number: 11137509
    Abstract: Systems and methods of performing a seismic survey are described. The system can receive seismic data. The system receives seismic data from one or more seismic data sources. The system propagates the seismic data forward in time through a subsurface model to generate a first wavefield. The system propagates the seismic data backward in time through the subsurface model to generate a second wavefield. The system combines the first wavefield with the second wavefield using a time gate imaging condition to produce subsurface images and image gathers.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: October 5, 2021
    Assignee: FAIRFIELD INDUSTRIES, INC.
    Inventors: William Aeppli Schneider, Jr., Paul Docherty, Araz Mahdad
  • Patent number: 11086039
    Abstract: Systems and methods of deploying seismic data acquisition units from a marine vessel are disclosed. The system can include a mechanical attachment device comprising a cavity formed by interlocking a first member and a second member. Protrusions located on the first member and second member can increase the coefficient of friction between a rope and the mechanical attachment device responsive to an increase in tension on the rope. A lanyard can couple a seismic data acquisition unit to the mechanical attachment device.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: August 10, 2021
    Assignee: FAIRFIELD INDUSTRIES, INC.
    Inventors: Chance Mann, Mike Shirley
  • Publication number: 20190243018
    Abstract: Systems and methods of performing a seismic survey are described. The system can receive seismic data. The system receives seismic data from one or more seismic data sources. The system propagates the seismic data forward in time through a subsurface model to generate a first wavefield. The system propagates the seismic data backward in time through the subsurface model to generate a second wavefield. The system combines the first wavefield with the second wavefield using a time gate imaging condition to produce subsurface images and image gathers.
    Type: Application
    Filed: February 1, 2019
    Publication date: August 8, 2019
    Applicant: Fairfield Industries, Inc.
    Inventors: William Aeppli Schneider, JR., Paul Docherty, Araz Mahdad
  • Patent number: 10171181
    Abstract: An apparatus is described which uses directly modulated InGaN Light-Emitting Diodes (LEDs) or InGaN lasers as the transmitters for an underwater data-communication device. The receiver uses automatic gain control to facilitate performance of the apparatus over a wide-range of distances and water turbidities.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: January 1, 2019
    Assignee: Fairfield Industries, Inc.
    Inventors: William Hopewell, Philip Lacovara, Michael Morris
  • Patent number: 10151848
    Abstract: The present disclosure is directed to a helical conveyor for underwater seismic exploration. The system can include a case having a cylindrical portion. A cap is positioned adjacent to a first end of the case. A conveyor having a helix structure is provided within the case. The conveyor can receive an ocean bottom seismometer (“OBS”) unit at a first end of the conveyer and transport the OBS unit via the helix structure to a second end of the conveyor to provide the OBS unit on the seabed to acquire the seismic data.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: December 11, 2018
    Assignee: Fairfield Industries, Inc.
    Inventors: Roger L. Fyffe, Etienne Marc
  • Patent number: 10114137
    Abstract: The present disclosure is directed to underwater seismic exploration with a helical conveyor and skid structure. The system can include an underwater vehicle comprising a sensor to identify a case having a hydrodynamic shape, wherein the case stores one or more ocean bottom seismometer (“OBS”) units. The underwater vehicle includes an arm. The underwater vehicle includes an actuator to position the arm in an open state above a cap of the case, or to close the arm. The underwater vehicle can move the arm to a bottom portion of the case opposite the cap. An opening of the case can be aligned with the conveyor of the underwater vehicle. The conveyor can receive, via the opening of the case, a first OBS unit of the one or more OBS units. The conveyor can move the first OBS unit to the seabed to acquire seismic data from the seabed.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: October 30, 2018
    Assignee: Fairfield Industries, Inc.
    Inventors: Roger L. Fyffe, Etienne Marc
  • Patent number: 10048397
    Abstract: The present disclosure is directed to a helical conveyor for underwater seismic exploration. The system can include a case having a cylindrical portion. A cap is positioned adjacent to a first end of the case. A conveyor having a helix structure is provided within the case. The conveyor can receive an ocean bottom seismometer (“OBS”) unit at a first end of the conveyer and transport the OBS unit via the helix structure to a second end of the conveyor to provide the OBS unit on the seabed to acquire the seismic data. The system can include a propulsion system to receive an instruction and, responsive to the instruction, facilitate movement of the case.
    Type: Grant
    Filed: July 21, 2016
    Date of Patent: August 14, 2018
    Assignee: FAIRFIELD INDUSTRIES, INC.
    Inventors: Roger L. Fyffe, Etienne Marc
  • Patent number: 10045455
    Abstract: A self-contained, wireless seismic data acquisition unit having a cylindrically shaped case with smooth side walls along the length of the case. A retaining ring around the circumference is used to secure the cylindrical upper portion of the case to the cylindrical lower portion of the case. Interleaved fingers on the upper portion of the case and the lower portion of the case prevent the upper portion and the lower portion from rotating relative to one another. Ruggedized external electrical contacts are physically decoupled from rigid attachment to the internal electrical components of the unit utilizing electrical pins that “float” relative to the external case and the internal circuit board on which the pins are carried. The seismic sensors in the unit, such as geophones, and the antennae for the unit are located along the major axis of the cylindrically shaped case to improve fidelity and timing functions.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: August 7, 2018
    Assignee: FAIRFIELD INDUSTRIES, INC.
    Inventors: Clifford H. Ray, Glenn D. Fisseler, William Guyton
  • Patent number: 10018742
    Abstract: The present disclosure is directed to a skid structure for underwater seismic exploration. The system can include an underwater vehicle comprising a skid structure. A conveyor is provided in the skid structure. The conveyor includes a first end and a second end opposite the first end. A capture appliance is provided at the first end of the conveyor. The capture appliance includes an arm to close to hold a case storing one or more ocean bottom seismometer (“OBS”) units, and to open to release the case. The capture appliance includes an alignment mechanism to align an opening of the case with the first end of the conveyor. A deployment appliance can be at the second end of the conveyor. The deployment appliance can place an OBS unit of the one or more OBS units onto the seabed to acquire seismic data from the seabed.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: July 10, 2018
    Assignee: FAIRFIELD INDUSTRIES, INC.
    Inventors: Roger L. Fyffe, Etienne Marc
  • Publication number: 20180003838
    Abstract: Systems and methods of performing a seismic survey in a marine environment are provided. The system includes a seismic data acquisition unit disposed on a seabed in the marine environment. The seismic data acquisition unit includes a local pressure sensor, an optical transmitter and an optical receiver to determine one or more pressure values. The system includes an extraction vehicle including a reference pressure sensor, an optical transmitter, and an optical receiver to establish an optical communications link with the seismic data acquisition unit, and generate reference pressure data. The system includes at least one of the local pressure sensor and the one or more pressure values calibrated based on the reference pressure data generated by the extraction vehicle.
    Type: Application
    Filed: June 16, 2017
    Publication date: January 4, 2018
    Applicant: Fairfield Industries, Inc.
    Inventors: Michael Morris, William Guyton
  • Publication number: 20180003837
    Abstract: Systems and methods of performing a seismic survey are provided. The system includes a seismic data acquisition unit having a transmitter window disposed in a first aperture of a lid, and having a receiver window disposed in a second aperture of the lid. A first gasket is positioned between the transmitter window and the first aperture to provide a clearance greater than a threshold to allow the transmitter window to deform. A second gasket is positioned between the receiver window and the second aperture to provide a clearance greater than the threshold to allow the receiver window to deform. At least one of the transmitter window and the receiver window of the seismic data acquisition unit are configured to pass at least one of optical and electromagnetic communications to or from an extraction vehicle via at least one of a transmitter window and a receiver window of the extraction vehicle.
    Type: Application
    Filed: June 16, 2017
    Publication date: January 4, 2018
    Applicant: Fairfield Industries, Inc.
    Inventors: Michael Morris, William Guyton, Matthew Stubbe, Chris Nikirk
  • Publication number: 20180003836
    Abstract: Systems and methods of optical link communication with seismic data acquisition units are provided. The systems and methods can perform at least portions of seismic data acquisition survey. A plurality of seismic data acquisition units can be deployed on a seabed. An optical communications link can be established between an extraction vehicle and at least one of the seismic data acquisition units. A frequency of the at least one seismic data acquisition unit can be syntonized or synchronized via the optical communications link. The at least one seismic data acquisition unit can be instructed to enter a low power state subsequent to syntonizing the frequency of the at least one seismic data acquisition unit. The seismic data acquisition unit can exit the low power state and acquire seismic data in an operational state.
    Type: Application
    Filed: June 16, 2017
    Publication date: January 4, 2018
    Applicant: Fairfield Industries, Inc.
    Inventors: Michael Morris, Tom O'Brien
  • Patent number: 9841522
    Abstract: The present disclosure is directed to loading a helical conveyor for underwater seismic exploration. The system includes a case and a first conveyor having a helix structure provided within the case to support one or more ocean bottom seismometer (“OBS”) units. The case can include a first opening at a first end of the first conveyor and a second opening at a second end of the first conveyor. The system can include a base to receive at least a portion of the case. The system can include a second conveyor positioned external to the case that can move an OBS unit into the first opening at the first end of the first conveyor. The first conveyor can receive the OBS unit and direct the OBS unit towards the second opening at the second end of the first conveyor.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: December 12, 2017
    Assignee: FAIRFIELD INDUSTRIES, INC.
    Inventors: Roger L. Fyffe, Etienne Marc
  • Patent number: 9829594
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Grant
    Filed: October 28, 2014
    Date of Patent: November 28, 2017
    Assignee: FAIRFIELD INDUSTRIES, INC.
    Inventors: Clifford H. Ray, Glenn D. Fisseler, James N. Thompson, Hal B. Haygood
  • Patent number: 9829589
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: November 28, 2017
    Assignee: FAIRFIELD INDUSTRIES, INC.
    Inventors: Clifford H. Ray, Glenn D. Fisseler, James N. Thompson, Hal B. Haygood
  • Patent number: 9630691
    Abstract: Systems and methods for deployment and retrieval of ocean bottom seismic receivers. In some embodiments, the system includes a carrier containing receivers. The carrier can include a frame having a mounted structure (e.g., a movable carousel, movable conveyor, fixed parallel rails, or a barrel) for seating and releasing the receivers (e.g., axially stacked). The structure can facilitate delivering receivers to a discharge port on the frame. The system can include a discharge mechanism for removing receivers from the carrier. In some embodiments, the method includes loading a carrier with receivers, transporting the carrier from a surface vessel to a position adjacent the seabed, and using an ROV to remove receivers from the carrier and place the receivers on the seabed. In some embodiments, an ROV adjacent the seabed engages a deployment line that guides receivers from the vessel down to the ROV for “on-time” delivery and placement on the seabed.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: April 25, 2017
    Assignee: FAIRFIELD INDUSTRIES, INC.
    Inventors: James N. Thompson, Clifford H. Ray, Glenn D. Fisseler, Roger L. Fyffe
  • Patent number: 9500757
    Abstract: The transmission system combines a self-contained, wireless seismic acquisition unit and a wireless, line of site, communications unit to form a plurality of individual short-range transmission networks and also a mid-range, line of sight transmission network.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: November 22, 2016
    Assignee: FAIRFIELD INDUSTRIES, INC.
    Inventor: Clifford H. Ray
  • Patent number: 9488743
    Abstract: A self-contained, wireless seismic data acquisition unit having a cylindrically shaped case with smooth side walls along the length of the case. A retaining ring around the circumference is used to secure the cylindrical upper portion of the case to the cylindrical lower portion of the case. Interleaved fingers on the upper portion of the case and the lower portion of the case prevent the upper portion and the lower portion from rotating relative to one another. Ruggedized external electrical contacts are physically decoupled from rigid attachment to the internal electrical components of the unit utilizing electrical pins that “float” relative to the external case and the internal circuit board on which the pins are carried. The seismic sensors in the unit, such as geophones, and the antennae for the unit are located along the major axis of the cylindrically shaped case to improve fidelity and timing functions.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: November 8, 2016
    Assignee: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler, William Guyton
  • Patent number: 9470809
    Abstract: The transmission system combines a self-contained, wireless seismic acquisition unit and a wireless, line of site, communications unit to form a plurality of individual short-range transmission networks and also a mid-range, line of sight transmission network.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: October 18, 2016
    Assignee: Fairfield Industries, Inc.
    Inventor: Clifford H. Ray