Patents Assigned to Fairfield Industries, Inc.
  • Patent number: 9465078
    Abstract: A method of determining battery performance information indicative of a performance of a battery in a device is disclosed, the method including: receiving environmental condition information indicative of environmental conditions of the device during a usage period; receiving operating parameter information indicative of one or more operating parameters of the battery during the usage period; and determining the battery performance information based at least in part on: the environmental condition information, the operating parameter information, and a performance model corresponding to the battery.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: October 11, 2016
    Assignee: FAIRFIELD INDUSTRIES, INC.
    Inventor: Timothy M. Betzner
  • Patent number: 9459359
    Abstract: A self-contained, wireless seismic data acquisition unit having a cylindrically shaped case with smooth side walls along the length of the case. A retaining ring around the circumference is used to secure the cylindrical upper portion of the case to the cylindrical lower portion of the case. Interleaved fingers on the upper portion of the case and the lower portion of the case prevent the upper portion and the lower portion from rotating relative to one another. Ruggedized external electrical contacts are physically decoupled from rigid attachment to the internal electrical components of the unit utilizing electrical pins that “float” relative to the external case and the internal circuit board on which the pins are carried. The seismic sensors in the unit, such as geophones, and the antennae for the unit are located along the major axis of the cylindrically shaped case to improve fidelity and timing functions.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: October 4, 2016
    Assignee: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler, William Guyton
  • Publication number: 20140363166
    Abstract: An apparatus is described which uses directly modulated InGaN Light-Emitting Diodes (LEDs) or InGaN lasers as the transmitters for an underwater data-communication device. The receiver uses automatic gain control to facilitate performance of the apparatus over a wide-range of distances and water turbidities.
    Type: Application
    Filed: March 15, 2013
    Publication date: December 11, 2014
    Applicant: FAIRFIELD INDUSTRIES, INC.
    Inventor: FAIRFIELD INDUSTRIES, INC.
  • Patent number: 8885441
    Abstract: The transmission method utilizes multiple seismic acquisition units within an array as intermediate short range radio receivers/transmitters to pass collected seismic data in relay fashion back to a control station. Any one seismic unit in the array is capable of transmitting radio signals to several other seismic units positioned within radio range of the transmitting unit, thus allowing the system to select an optimal transmission path. Utilizing an array of seismic units permits transmission routes back to a control station to be varied as needed. In transmissions from the most remote seismic unit to the control station, each unit within a string receives seismic data from other units and transmits the received seismic data along with the receiving unit's locally stored seismic data. Preferably, as a transmission is passed along a chain, it is bounced between seismic units so as to be relayed by each unit in the array.
    Type: Grant
    Filed: May 8, 2014
    Date of Patent: November 11, 2014
    Assignee: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler
  • Patent number: 8879356
    Abstract: The transmission method utilizes multiple seismic acquisition units within an array as intermediate short range radio receivers/transmitters to pass collected seismic data in relay fashion back to a control station. Any one seismic unit in the array is capable of transmitting radio signals to several other seismic units positioned within radio range of the transmitting unit, thus allowing the system to select an optimal transmission path. Utilizing an array of seismic units permits transmission routes back to a control station to be varied as needed. In transmissions from the most remote seismic unit to the control station, each unit within a string receives seismic data from other units and transmits the received seismic data along with the receiving unit's locally stored seismic data. Preferably, as a transmission is passed along a chain, it is bounced between seismic units so as to be relayed by each unit in the array.
    Type: Grant
    Filed: May 16, 2014
    Date of Patent: November 4, 2014
    Assignee: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler
  • Patent number: 8879362
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: November 4, 2014
    Assignee: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler, James N. Thompson, Hal B. Haygood
  • Patent number: 8873336
    Abstract: The transmission method utilizes multiple seismic acquisition units within an array as intermediate short range radio receivers/transmitters to pass collected seismic data in relay fashion back to a control station. Any one seismic unit in the array is capable of transmitting radio signals to several other seismic units positioned within radio range of the transmitting unit, thus allowing the system to select an optimal transmission path. Utilizing an array of seismic units permits transmission routes back to a control station to be varied as needed. In transmissions from the most remote seismic unit to the control station, each unit within a string receives seismic data from other units and transmits the received seismic data along with the receiving unit's locally stored seismic data. Preferably, as a transmission is passed along a chain, it is bounced between seismic units so as to be relayed by each unit in the array.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: October 28, 2014
    Assignee: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler
  • Patent number: 8873335
    Abstract: The transmission method utilizes multiple seismic acquisition units within an array as intermediate short range radio receivers/transmitters to pass collected seismic data in relay fashion back to a control station. Any one seismic unit in the array is capable of transmitting radio signals to several other seismic units positioned within radio range of the transmitting unit, thus allowing the system to select an optimal transmission path. Utilizing an array of seismic units permits transmission routes back to a control station to be varied as needed. In transmissions from the most remote seismic unit to the control station, each unit within a string receives seismic data from other units and transmits the received seismic data along with the receiving unit's locally stored seismic data. Preferably, as a transmission is passed along a chain, it is bounced between seismic units so as to be relayed by each unit in the array.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: October 28, 2014
    Assignee: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler
  • Patent number: 8867310
    Abstract: The transmission method utilizes multiple seismic acquisition units within an array as intermediate short range radio receivers/transmitters to pass collected seismic data in relay fashion back to a control station. Any one seismic unit in the array is capable of transmitting radio signals to several other seismic units positioned within radio range of the transmitting unit, thus allowing the system to select an optimal transmission path. Utilizing an array of seismic units permits transmission routes back to a control station to be varied as needed. In transmissions from the most remote seismic unit to the control station, each unit within a string receives seismic data from other units and transmits the received seismic data along with the receiving unit's locally stored seismic data. Preferably, as a transmission is passed along a chain, it is bounced between seismic units so as to be relayed by each unit in the array.
    Type: Grant
    Filed: April 22, 2014
    Date of Patent: October 21, 2014
    Assignee: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler
  • Publication number: 20140129163
    Abstract: A method of determining battery performance information indicative of a performance of a battery in a device is disclosed, the method including: receiving environmental condition information indicative of environmental conditions of the device during a usage period; receiving operating parameter information indicative of one or more operating parameters of the battery during the usage period; and determining the battery performance information based at least in part on: the environmental condition information, the operating parameter information, and a performance model corresponding to the battery.
    Type: Application
    Filed: March 8, 2013
    Publication date: May 8, 2014
    Applicant: Fairfield Industries, Inc.
    Inventor: Fairfield Industries, Inc.
  • Publication number: 20140104987
    Abstract: A self-contained, wireless seismic data acquisition unit having a cylindrically shaped case with smooth side walls along the length of the case. A retaining ring around the circumference is used to secure the cylindrical upper portion of the case to the cylindrical lower portion of the case. Interleaved fingers on the upper portion of the case and the lower portion of the case prevent the upper portion and the lower portion from rotating relative to one another. Ruggedized external electrical contacts are physically decoupled from rigid attachment to the internal electrical components of the unit utilizing electrical pins that “float” relative to the external case and the internal circuit board on which the pins are carried. The seismic sensors in the unit, such as geophones, and the antennae for the unit are located along the major axis of the cylindrically shaped case to improve fidelity and timing functions.
    Type: Application
    Filed: December 16, 2013
    Publication date: April 17, 2014
    Applicant: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler, William Guyton
  • Publication number: 20140098641
    Abstract: The transmission method utilizes multiple seismic acquisition units within an array as intermediate short range radio receivers/transmitters to pass collected seismic data in relay fashion back to a control station. Any one seismic unit in the array is capable of transmitting radio signals to several other seismic units positioned within radio range of the transmitting unit, thus allowing the system to select an optimal transmission path. Utilizing an array of seismic units permits transmission routes back to a control station to be varied as needed. In transmissions from the most remote seismic unit to the control station, each unit within a string receives seismic data from other units and transmits the received seismic data along with the receiving unit's locally stored seismic data. Preferably, as a transmission is passed along a chain, it is bounced between seismic units so as to be relayed by each unit in the array.
    Type: Application
    Filed: December 9, 2013
    Publication date: April 10, 2014
    Applicant: FAIRFIELD INDUSTRIES, INC.
    Inventors: Clifford H. Ray, Glenn D. Fisseler
  • Patent number: 8644111
    Abstract: The transmission method utilizes multiple seismic acquisition units within an array as intermediate short range radio receivers/transmitters to pass collected seismic data in relay fashion back to a control station. Any one seismic unit in the array is capable of transmitting radio signals to several other seismic units positioned within radio range of the transmitting unit, thus allowing the system to select an optimal transmission path. Utilizing an array of seismic units permits transmission routes back to a control station to be varied as needed. In transmissions from the most remote seismic unit to the control station, each unit within a string receives seismic data from other units and transmits the received seismic data along with the receiving unit's locally stored seismic data. Preferably, as a transmission is passed along a chain, it is bounced between seismic units so as to be relayed by each unit in the array.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: February 4, 2014
    Assignee: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler
  • Patent number: 8611191
    Abstract: A self-contained, wireless seismic data acquisition unit having a cylindrically shaped case with smooth side walls along the length of the case. A retaining ring around the circumference is used to secure the cylindrical upper portion of the case to the cylindrical lower portion of the case. Interleaved fingers on the upper portion of the case and the lower portion of the case prevent the upper portion and the lower portion from rotating relative to one another. Ruggedized external electrical contacts are physically decoupled from rigid attachment to the internal electrical components of the unit utilizing electrical pins that “float” relative to the external case and the internal circuit board on which the pins are carried. The seismic sensors in the unit, such as geophones, and the antennae for the unit are located along the major axis of the cylindrically shaped case to improve fidelity and timing functions.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: December 17, 2013
    Assignee: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler, William Guyton
  • Patent number: 7724607
    Abstract: A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: May 25, 2010
    Assignee: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler, James N. Thompson, Hal B. Haygood
  • Patent number: 7649803
    Abstract: A method for retrieval of self-contained, autonomous ocean bottom seismic data acquisition units secured to a non-rigid, non-conducing cable, wherein the cable is retrieved over the trailing edge of a working vessel on the surface of the water so as to permit the cable to billow out in the water column behind the vessel, thereby reducing stress on the cable and permitting greater control in cable handling.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: January 19, 2010
    Assignee: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler, James N. Thompson, Hal B. Haygood
  • Patent number: 7602667
    Abstract: A seismic cable system for joining the free ends of a seismic cable utilizing a connector which will separate when subject to a predetermined load. The system includes a first cable connector section that is rotatingly mounted directly on a first free cable end and a second cable connector section that is rotatingly mounted directly on a second free cable end. One cable connector section seats within the other cable connector section and the two sections are fixed to one another with a shear pin. The system is particularly useful when utilizing non-conducting, flexible cable or rope to deploy and retrieve a plurality of stand-alone, self-contained seismic data acquisition units secured to the cable.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: October 13, 2009
    Assignee: Fairfield Industries, Inc.
    Inventor: James N. Thompson
  • Patent number: 7561493
    Abstract: A seismic exploration method and unit comprised of continuous recording, self-contained wireless seismometer units or pods. The self-contained unit may include a tilt meter, a compass and a mechanically gimbaled clock platform. Upon retrieval, seismic data recorded by the unit can be extracted and the unit can be charged, tested, re-synchronized, and operation can be re-initiated without the need to open the unit's case. The unit may include an additional geophone to mechanically vibrate the unit to gauge the degree of coupling between the unit and the earth. The unit may correct seismic data for the effects of crystal aging arising from the clock. Deployment location of the unit may be determined tracking linear and angular acceleration from an initial position. The unit may utilize multiple geophones angularly oriented to one another in order to redundantly measure seismic activity in a particular plane.
    Type: Grant
    Filed: January 28, 2004
    Date of Patent: July 14, 2009
    Assignee: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler, Hal B. Haygood
  • Patent number: 7433265
    Abstract: Coherent wave noise energy is removed from seismic data by modeling both the P-wave primary energy and the coherent wave noise energy. The P-wave primary energy is modeled first and then subtracted from the input data. The data with the P-wave primary energy removed is used as the input for coherent wave energy removal. The coherent wave energy is modeled and subtracted from the original input data, i.e. the data input into P-wave primary removal. This leaves a dataset with P-wave primary energy and noise energy not related to coherent waves. This method can be utilized to remove all types of coherent noise with a velocity difference to the desired P-wave primary energy or with a different type of moveout (change of time of arrival with source-receiver distance) such as, for example, linear moveout.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: October 7, 2008
    Assignee: Fairfield Industries, Inc.
    Inventors: Kenneth L. Craft, Bryan C. Keller
  • Patent number: RE45268
    Abstract: A seismic exploration method and unit comprised of continuous recording, self-contained wireless seismometer units or pods. The self-contained unit may include a tilt meter, a compass and a mechanically gimbaled clock platform. Upon retrieval, seismic data recorded by the unit can be extracted and the unit can be charged, tested, re-synchronized, and operation can be re-initiated without the need to open the unit's case. The unit may include an additional geophone to mechanically vibrate the unit to gauge the degree of coupling between the unit and the earth. The unit may correct seismic data for the effects of crystal aging arising from the clock. Deployment location of the unit may be determined tracking linear and angular acceleration from an initial position. The unit may utilize multiple geophones angularly oriented to one another in order to redundantly measure seismic activity in a particular plane.
    Type: Grant
    Filed: July 26, 2013
    Date of Patent: December 2, 2014
    Assignee: Fairfield Industries, Inc.
    Inventors: Clifford H. Ray, Glenn D. Fisseler, Hal B. Haygood