Patents Assigned to Heartware, Inc.
  • Patent number: 11344716
    Abstract: A rotor for an axial-flow blood pump has blades projecting outwardly from a hub and channels between the blades. The blades incorporate hydrodynamic bearing surfaces capable of suspending the rotor during operation. The rotor has a configuration which provides superior pumping action and reduced shear of blood passing through the pump. The forwardly facing pressure surfaces of the blades may include outflow corner surface at their downstream ends. The outflow corner surfaces desirably slope rearwardly and intersect the rearwardly-facing suction surfaces of the blades at outflow ends of the blades.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: May 31, 2022
    Assignee: HeartWare, Inc.
    Inventor: Mustafa Ertan Taskin
  • Patent number: 11318295
    Abstract: A blood pump having a housing including an inlet element. The inlet element has a proximal portion sized to be received within at least a portion of a heart of a patient and defines a major longitudinal axis. A rotor is configured to rotate within the housing about the major longitudinal axis and impel blood from heart. At least one stator is disposed within the housing and positioned within the housing at least one from the group consisting of upstream and downstream from the rotor. During operation of the blood pump the rotor is maintained at an oblique angle with respect to the major longitudinal axis.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: May 3, 2022
    Assignee: HeartWare, Inc.
    Inventors: Carlos Reyes, Justin Wolman
  • Patent number: 11311711
    Abstract: A method of controlling a blood pump including executing a control command to temporarily displace an impeller of the blood pump within a pump housing from a first axial position relative to the pump housing to a second axial position a distance away from the first axial position using a vector control method, and causing the impeller to move from the second axial position to a third axial position, the third axial position including a positive and a negative displacement of the impeller relative to the first axial position.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: April 26, 2022
    Assignee: HeartWare, Inc.
    Inventors: Fernando Casas, Carlos Reyes, Justin Wolman, Thomas R. Johnson
  • Patent number: 11305103
    Abstract: A housing having an interior and an exterior. A pump rotor is configured to be received within the interior of the housing, the pump rotor includes a magnet. A stator having a delivery configuration and an operative configuration is included, the stator in the delivery configuration has a delivery diameter, the stator in the operative configuration being configured to be disposed around the exterior of the housing and to form an assembled pump having a diameter greater than the delivery diameter.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: April 19, 2022
    Assignee: HeartWare, Inc.
    Inventors: Jeffrey A. Larose, Gill B. Bearnson, Stanley P. Mack, Charles R. Shambaugh
  • Patent number: 11301453
    Abstract: An automated method for evaluating completeness of clinical data being transferred from a clinical device. The clinical data includes continuously logged data, intermittently logged data, and timestamp data associated with each of the continuously logged data and intermittently logged data. The method is executed by a processor and includes receiving the clinical data from the clinical device and based on the timestamp data associated with the continuously logged data, determining a time span over which the continuously logged data was obtained. The timestamp data associated with the intermittently logged data is compared with the determined time span. If any timestamp data associated with the intermittently logged data does not occur within the determined time span, an alert is issued indicating that the continuously logged data of the clinical data is incomplete.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: April 12, 2022
    Assignee: HEARTWARE, INC.
    Inventor: John Rudser
  • Patent number: 11273299
    Abstract: A method of determining a heart rate of a patient having an implanted blood pump including applying a voltage to a plurality of coils of a stator of the blood pump to produce an electromagnetic force to rotate a rotor in communication with the plurality of coils; displaying a waveform associated with a back electromotive force in the plurality of coils of the blood pump, the waveform being proportional to an axial position of the rotor relative to the stator; determining a time interval between a first alteration in the waveform relative to a baseline and a second alteration in the waveform relative to the baseline; and determining the heart rate of the patient based on the time interval.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: March 15, 2022
    Assignee: HeartWare, Inc.
    Inventors: Justin Wolman, Fernando Casas, Carlos Reyes
  • Patent number: 11273300
    Abstract: A pulsatile blood pump including a chamber having an upstream portion, a downstream portion, and a wall coupling the upstream portion to the downstream portion, the upstream portion defining an inlet sized to fit within a ventricle of a heart, the downstream portion defining an outlet, and the wall defining a bore; a piston disposed within the bore of the wall, the piston including a first side in continuous fluid communication with the ventricle of the heart when the inlet is within the ventricle of the heart and defining a travel path within the bore including an upstream direction toward the inlet and a downstream direction toward the outlet; and a valve coupled to the piston and defining a one-way fluid flow path within the chamber through the first side of the piston in the downstream direction.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: March 15, 2022
    Assignee: HEARTWARE, INC.
    Inventor: David A. Schafir
  • Patent number: 11259827
    Abstract: The present invention related to a coring tool for preparing a core or opening through tissue and methods of use thereof.
    Type: Grant
    Filed: October 16, 2018
    Date of Patent: March 1, 2022
    Assignee: HeartWare, Inc.
    Inventor: William Trueba
  • Patent number: 11235139
    Abstract: A system for detecting a suction condition in an implantable blood pump including a controller in communication with the blood pump. The controller includes a control circuit configured to calculate a present value during a time period, the present value corresponding to a pump speed divided by a pump current, determine a plurality of data values during the time period based on the present value, and determine a suction detection threshold value using the plurality of data values. The control circuit is also configured to compare the present value during the time period to the suction detection threshold value and generate an alert when the present value exceeds the suction detection threshold value on a plurality of instances during the time period, the alert corresponding to a suction condition.
    Type: Grant
    Filed: May 8, 2019
    Date of Patent: February 1, 2022
    Assignee: HeartWare, Inc.
    Inventor: D'Anne E. Kudlik
  • Patent number: 11185682
    Abstract: A control circuit includes a pump shutdown module responsive to one or more inputs indicating at least from the group consisting of an operational error at the implantable blood pump and an adverse physiological state of a user of the implantable blood pump. The pump shutdown module ceases operation of the implantable blood pump in response to the one or more inputs. A pump restart module configured to resume operation of the implantable blood pump in response to a first pump restart input and a second pump restart input is included. A pump restart lockout module configured to initiate a pump lockout mode in response to a lockout input is included. The pump lockout mode prevents resumption of operation of the implantable blood pump in response to the first pump restart input and allows resumption of operation of the implantable blood pump in response to the second pump restart input.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: November 30, 2021
    Assignee: HeartWare, Inc.
    Inventor: Robert C. Farnan
  • Patent number: 11173295
    Abstract: A dry disconnect device including a first portion defining an outlet and an outlet portion of a fluid pathway and a female valve disposed within the first portion having an extended position, including the female valve being configured to seal the outlet portion, and a retracted position. A second portion defining an inlet and an inlet portion of the fluid pathway is lockingly engageable with the first portion. A male valve is disposed within the second portion including a male valve transition member configured to translate the male valve from an extended position to a retracted position including the male valve being configured to seal the inlet portion. The extended position of the male valve causes the female valve to transition from the extended position to the retracted position and causes the outlet portion and the inlet portion of the fluid pathway to be in fluid communication with each other.
    Type: Grant
    Filed: August 4, 2020
    Date of Patent: November 16, 2021
    Assignee: HeartWare Inc.
    Inventors: Stanley P. Mack, Charles R. Shambaugh
  • Patent number: 11154701
    Abstract: The present disclosure provides for methods and systems for determining heart rate of a patient. Based on motor current signals of a ventricular assist device (VAD), each of first, second and third events in the measured current signal may be detected, the first event being indicative of a rise or fall in the current signal, the second event being indicative of a rise or fall in the current signal in the opposite direction as the first event, and the third event being indicative of a rise or fall in the current signal in the same direction as the first event. A timer counter may be initiated upon detection of the first event, and an elapsed time may be measured upon detection of the third event. Heart rate may be determined based on the elapsed time of the timer counter.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: October 26, 2021
    Assignee: HeartWare, Inc.
    Inventors: Carlos Reyes, Fernando Casas, Justin Wolman
  • Patent number: 11154702
    Abstract: A method of determining an adverse event within a patient having an implantable blood pump including calculating a plurality of power consumption trends of the blood pump during a plurality of time periods using a low-pass filter, determining a plurality of power trend differences between the plurality of power consumption trends, calculating a total amount of the plurality of power trend differences during a time interval, and generating an alarm when the total amount of the plurality of power trend differences exceeds a pre-determined threshold.
    Type: Grant
    Filed: January 16, 2019
    Date of Patent: October 26, 2021
    Assignee: HeartWare, Inc.
    Inventors: Abhijit Kadrolkar, Robert W. Stadler, Michael C. Brown
  • Patent number: 11131968
    Abstract: An apparatus for starting operation of a motor of an implantable blood pump including a memory storing one or more default parameters for at least one of controlling and monitoring the startup operation. A processor operatively coupled to the motor is included, the processor is configured to: commence the startup operation based on the one or more default parameters; detect an error during the startup operation; adjust at least one of the one or more default parameters in response to the detected error; store the at least one adjusted parameter in the memory; and commence subsequent startup operations based at least in part on the at least one adjusted parameter.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: September 28, 2021
    Assignee: HeartWare, Inc.
    Inventor: John Rudser
  • Patent number: 11110265
    Abstract: A remote controller updating system for an implantable blood pump including an implantable blood pump, an implantable controller coupled to the implantable blood pump, and a pump driveline including a data network connection in communication with the implantable controller. The system may also include a pump connector coupled to the pump driveline, a remote controller couplable to the implantable blood pump, and a system update assembly including a system update connector couplable to the pump connector and a power source coupled to the system update connector.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: September 7, 2021
    Assignee: HeartWare, Inc.
    Inventor: Thomas R. Johnson
  • Patent number: 11065434
    Abstract: A method of operating an implantable blood pump having a first stator, a second stator, and an impeller movably disposed there between. The method includes applying a first voltage waveform at first phase to the first stator to generate a magnetic field to rotate the impeller. A second voltage waveform is applied at a second phase shifted from the first phase to the second stator to rotate the impeller, the second voltage waveform is asymmetric to the first voltage waveform.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: July 20, 2021
    Assignee: HeartWare, Inc.
    Inventors: Mark S. Egler, Fernando Casas, Carlos Reyes, Jeffrey A. Larose
  • Patent number: 11058851
    Abstract: A kit including a sheath having a tubular body with proximal and distal ends, an axis extending between the ends and a wall defining a bore extending along the axis to the distal end of the body. A delivery tube having proximal and distal ends and a lumen is adapted for disposition within the bore of the sheath in sealing engagement with the sheath, the delivery tube being slideable distally relative to the sheath. An elongated cannula having proximal and distal ends and a lumen is adapted for disposition inside the lumen of the delivery tube and an elongated dilator is adapted to fit within the lumen of the cannula with a proximal portion of the dilator extending proximally beyond the proximal ends of the cannula and delivery tube and in sealing engagement with the delivery tube proximal to the cannula.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: July 13, 2021
    Assignee: HeartWare, Inc.
    Inventor: Robert C. Farnan
  • Patent number: 11058863
    Abstract: A blood pump including a housing having an inflow tube defining a major axis spanning through the inflow tube and a flow path spanning along the major axis, a rotor disposed within the inflow tube, the rotor and the inflow tube defining a gap therebetween, a stator surrounding the inflow tube and the rotor, and the housing defining an access conduit spanning through the inflow tube and the stator transverse to the major axis, the access conduit being in communication with the gap.
    Type: Grant
    Filed: October 26, 2018
    Date of Patent: July 13, 2021
    Assignee: HeartWare, Inc.
    Inventor: Zoe N. Demou
  • Patent number: 11027113
    Abstract: A mechanical circulatory support device. The mechanical circulatory support device includes an inner casing defining a fluid flow path, the fluid flow path defines a longitudinal axis. A rotor is mounted within the fluid flow path and configured to rotate about the longitudinal axis. A housing is included, the inner casing and the rotor being substantially disposed within the housing. The housing having a cross-sectional shape in a plane transverse to the longitudinal axis which decreases in thickness extending from a medial position to opposite lateral positions.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: June 8, 2021
    Assignee: HeartWare, Inc.
    Inventors: Douglas Godshall, Mustafa Ertan Taskin, Jeffrey A. Larose, Nick Youker, Andre Simon
  • Patent number: 10940250
    Abstract: A control circuit for controlling a supply of power to an external electronics module for controlling an implanted device of the user, the control circuit electrically coupled to a switching circuit for controlling an electrical connection between an external power source, a battery, and an external electronics module, the control circuit further electrically coupled to a sensor for sensing at least one from the group consisting of a voltage and a current received from the external power source, the control circuit being configured to control the switching circuit to electrically disconnect the external electronics module from the external power source and electrically connect the external electronics module to the battery in response to a sensed fluctuation of at least one from the group consisting of voltage and current and electrically connect the external electronics module to the external power source and electrically disconnect the external electronics module from the battery when the fluctuation is not
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: March 9, 2021
    Assignee: HeartWare, Inc.
    Inventor: John Rudser