Patents Assigned to Heartware, Inc.
  • Patent number: 10737006
    Abstract: A flow rate of blood through an implantable blood pump is determined based on a parameter related to the flow, such as a parameter related to thrust on the rotor of the pump. An amount of current supplied to the pump is used to determine each of a first flow rate value and second flow rate values. Each of the first and second flow rate values, in combination with the parameter related to thrust on the rotor of the pump, are used to calculate a flow rate of blood through the pump.
    Type: Grant
    Filed: September 7, 2018
    Date of Patent: August 11, 2020
    Assignee: HeartWare, Inc.
    Inventors: Fernando Casas, Justin Wolman, Carlos Reyes, Antonio Luiz Silva Ferreira
  • Patent number: 10731652
    Abstract: A rotary blood pump includes a casing defining a pumping chamber. The pumping chamber has a blood inlet and a tangential blood outlet. One or more motor stators are provided outside of the pumping chamber. A rotatable impeller is within the pumping chamber and is adapted to cause blood entering the pumping chamber to move to the blood outlet. The impeller has one or more magnetic regions. The impeller is radially constrained in rotation by magnetic coupling to one or more motor stators and is axially constrained in rotation by one or more hydrodynamic thrust bearing surfaces on the impeller.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: August 4, 2020
    Assignee: HeartWare, Inc.
    Inventors: Jeffrey A. LaRose, Charles R. Shambaugh
  • Patent number: 10729832
    Abstract: A blood pump, such as an axial flow pump, having a pump housing, the pump housing defining a flow path and having a tapered portion adjacent to an outlet, tapering toward the outlet, an outflow cannula connected to the outlet of the pump housing, and an impeller and diffuser, disposed in the pump housing, the diffuser having a tapered body corresponding to the tapered portion of the pump housing, the diffuser body having at least one vane extending therefrom, the vein tapering in the same direction as the diffuser body. The present invention also includes a method of manufacturing the blood pump and a method of implanting the blood pump.
    Type: Grant
    Filed: July 2, 2018
    Date of Patent: August 4, 2020
    Assignee: HeartWare, Inc.
    Inventor: Mustafa Ertan Taskin
  • Patent number: 10695477
    Abstract: A circulatory assist system is disclosed, the system including an implantable electrical device having an electric motor, an implantable controller connected to the implantable electrical device, and an implantable power source connected to the controller for supplying power to the controller. The controller is attachable to a first side of a percutaneous connector. A second side of the percutaneous connector, opposite to the first side, allows external connectivity to said controller.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: June 30, 2020
    Assignee: HeartWare, Inc.
    Inventors: Barry M. Yomtov, John Robert Batty, Jr., Daniel Tamez
  • Patent number: 10687931
    Abstract: A thrombus capture and lysis device including a filter sized to be implanted within a blood vessel. The filter includes a plurality of hollow elements defining a mesh sized to span an area of the blood vessel. Each of the plurality of hollow elements defines a plurality of pores being sized to allow passage of a thrombolytic drug out through the pores and to prevent a thrombus forming component from entering the pores.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: June 23, 2020
    Assignee: HeartWare, Inc.
    Inventor: Gill Brent Bearnson
  • Patent number: 10688232
    Abstract: A method of estimating an amount of work available to be performed by a blood pump implanted in a patient includes calculating a first coordinate value characterizing a volume of blood impelled in the pump and a second coordinate value characterizing a differential pressure across the pump for each of a plurality of flow rate data points of a given cardiac cycle of the patient, each flow rate data point indicative of a flow rate of blood through the pump. An area enclosed by the first and second coordinate values of the plurality of flow rate data points is determined, the determined area being indicative of an amount of work available to be performed by the blood pump.
    Type: Grant
    Filed: November 28, 2018
    Date of Patent: June 23, 2020
    Assignee: HeartWare, Inc.
    Inventors: Neil Voskoboynikov, Pedro Grave de Peralta
  • Patent number: 10688231
    Abstract: A system and method for implanting a ventricular assist device (“VAD”) within the heart includes one or more tools, each having a tool body with a passage. Each tool body can be engaged with an anchor ring assembly secured to the heart. A coring tool can be advanced through the passage in a tool body and used to form a hole in the heart wall, and then valve actuating elements carried on the tool can be used to close a valve incorporated in the anchor ring assembly. A VAD can be passed into the heart through a passage in a tool body after opening the valve. The procedure can be performed while the heart continues to beat, without gross blood loss.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: June 23, 2020
    Assignee: HeartWare, Inc.
    Inventor: Lance Lynn Andrus
  • Patent number: 10675396
    Abstract: A method of detecting a suction condition during operation of a rotary blood pump with an inlet connected to a ventricle of the heart of a patient, an outlet connected to an artery of the patient, a rotor, and a control circuit configured maintain the rotor at a set rotational speed. The method includes measuring the rotational speed of the rotor at a plurality of times during each of a plurality of speed measurement intervals. A speed range is determined between a minimum measured speed and a maximum measured speed during each of the plurality of speed measurement intervals. At least one additional parameter relating to the operation of the blood pump is derived. A suction detection signal is generated if both at least one determined speed range is above a speed range limit and the at least one additional parameter is indicative of a suction condition.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: June 9, 2020
    Assignee: HeartWare, Inc.
    Inventors: Michael C. Brown, Neil Voskoboynikov
  • Patent number: 10660997
    Abstract: A blood pump has an inner housing and an actuator at least partially surrounded by the inner housing which is configured to drive a flow of blood within the body. An electronic component associated with a surface of the housing includes one or more thin film active electronic devices which implement one or more transducers configured to generate a signal based on movement associated with operation of the blood pump. An electromagnetic stator at least partially surrounds the inner housing and is configured to be magnetically coupled with the actuator in an energized state of the electromagnetic stator, wherein the electromagnetic stator may overlie at least a portion of the electronic component.
    Type: Grant
    Filed: September 21, 2017
    Date of Patent: May 26, 2020
    Assignee: HeartWare, Inc.
    Inventor: Fernando Casas
  • Patent number: 10660669
    Abstract: A method includes coupling, at least temporarily, a support member adjacent to a target tissue. The support member is configured to support the target tissue and to define a path along which a cutting device can move. The method includes moving the cutting device along the path defined by the support member to cut and/or dilate the target tissue. In some embodiments, the method optionally includes disposing a cannula of a device within the cut defined in target tissue. The cannula is coupled to the target tissue such that a lumen defined by the cannula is in fluid communication with a volume defined at least in part by the target tissue.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: May 26, 2020
    Assignee: HeartWare, Inc.
    Inventors: Paul A. Spence, Landon Tompkins, Robert Acland
  • Patent number: 10632240
    Abstract: A ventricular assist device incorporating a rotary pump configured to be in fluid communication with a heart and systemic circulation of a subject to assist blood flow from the heart to the systemic circulation. The device includes a pump drive circuit for applying power to the pump, one or more sensors for sensing one or more electrogram signals (such as subcutaneous pre-cordial electrode signals) in the patient, and a signal processing circuit to determine the presence or absence of a reduction in cardiac blood flow, ischemic condition or myocardial infarction condition based on subcutaneous pre-cordial electrode signals, to control power supplied to the pump from the pump drive circuit, and to operate the pump in either a normal sinus rhythm mode in the absence of an ischemic condition or myocardial infarction condition, or a modified mode of operation in the presence of an ischemic condition or myocardial infarction condition.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: April 28, 2020
    Assignee: HeartWare, Inc.
    Inventor: Barry M. Yomtov
  • Patent number: 10601241
    Abstract: The present disclosure relates to a module for relaying power wirelessly to a device implanted in a user. The module may include a structure adapted to be worn by the user, a receiver configured to receive a first wireless power transmission at a first frequency, a transmitter configured to transmit a second wireless power transmission at a second frequency different from the first frequency, and a frequency changer configured to convert energy generated by the first wireless power transmission into energy for generating the second wireless power transmission. Each of the receiver, transmitter and frequency changer may be disposed on or in the structure.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: March 24, 2020
    Assignee: HeartWare, Inc.
    Inventor: John Rudser
  • Patent number: 10596307
    Abstract: A blood pump incorporating a rotary pump such as a rotary impeller pump implantable in fluid communication with a ventricle and an artery to assist blood flow from the ventricle to the artery. The device may include a pump drive circuit supplying power to the pump, one or more sensors for sensing one or more electrophysiological signals such as subcutaneous, pre-cordial ECG signals and a signal processing circuit connected to the sensors and to the pump drive circuit. The signal processing circuit is operative to detect the sensor signals and control power supplied to the pump from the pump drive circuit so that the pump may run in a normal sinus rhythm mode, with a varying speed synchronized with the cardiac cycle. When an ischemic or myocardial infarction condition is detected, the pump drive circuit may also run the pump in an ischemia or myocardial infarction mode different from the normal sinus rhythm mode.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: March 24, 2020
    Assignee: HeartWare, Inc.
    Inventor: Barry M. Yomtov
  • Patent number: 10589011
    Abstract: A ventricular assist device includes a pump configured to pump blood of a patient. A motor is configured to operate the pump. First, second, and third conductors are coupled to the motor and are configured to supply electric current from a power supply to the motor in first, second, and third phases, respectively. A controller is configured to operate the motor using a Field Oriented Control (FOC) method, and if one from the group consisting of first, second and third conductors becomes unable to supply electric current to the motor, the controller continues to operate the motor using the FOC method using the phases of the two conductors that are able to supply electric current to the motor.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: March 17, 2020
    Assignee: HeartWare, Inc.
    Inventors: Fernando Casas, Carlos Reyes, Justin Wolman
  • Patent number: 10576191
    Abstract: An implantable blood pump including an inflow cannula, the inflow cannula having a malleable tube including an inflow portion, a steering assembly coupled to the inflow portion of the tube, an actuator coupled to the steering assembly for applying a force to the tube, and a cannula tip extending from the inflow portion of the tube and defining an aperture in fluid communication with the tube.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: March 3, 2020
    Assignee: HeartWare, Inc.
    Inventor: Jeffrey A. LaRose
  • Patent number: 10568997
    Abstract: A connector for connecting an implant device to tissue of a person's body. The connector including a frame having first and second arms. The first and second arms define an opening, where at least a portion of the implant device is inserted through the opening. After insertion, an additional securing member is connected to the frame. The securing member is adapted to receive at least one suture to secure the frame to the tissue. The connector includes an adjuster that is movably connected to the first and second arms, where the adjuster is operable to cause the first and second arms to move toward each other and engage the implant device.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: February 25, 2020
    Assignee: HeartWare, Inc.
    Inventors: Daniel Tamez, Virote Indravudh, Richard A. Marquis, Charles R. Shambaugh, Jeffrey A. Larose
  • Patent number: 10561774
    Abstract: A method of detecting a disruption in a diurnal rhythm of a patient having an implantable blood pump comprising calculating a moving average convergence divergence (MACD) based on power consumed by the implantable blood pump to maintain a constant rotational speed of an impeller of the implantable blood pump and generating an alert when the calculated MACD does not cross a MACD zero line for a predetermined MACD zero line crossing time threshold.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: February 18, 2020
    Assignee: HeartWare, Inc.
    Inventors: Neil Voskoboynikov, Pedro E. Grave De Peralta, Veronica Ramos
  • Patent number: 10556048
    Abstract: A housing having an interior and an exterior. A pump rotor is configured to be received within the interior of the housing, the pump rotor includes a magnet. A stator having a delivery configuration and an operative configuration is included, the stator in the delivery configuration has a delivery diameter, the stator in the operative configuration being configured to be disposed around the exterior of the housing and to form an assembled pump having a diameter greater than the delivery diameter.
    Type: Grant
    Filed: October 24, 2017
    Date of Patent: February 11, 2020
    Assignee: HeartWare, Inc.
    Inventors: Jeffrey A. LaRose, Gill B. Bearnson, Stanley P. Mack, Charles R. Shambaugh
  • Patent number: 10549019
    Abstract: A blood pump casing including a unitary body. The unitary body defines an inlet chamber extending along a first axis and having a first radius perpendicular to the first axis. A transition chamber is connected to the inlet chamber and has a wall extending in a circumferential direction around the first axis, the wall has a major radius and a minor radius from the first axis, the major radius being greater than the first radius. A post extends from the transition chamber into the inlet chamber along the first axis, the post tapers in the direction around the first axis toward the inlet chamber. An outlet is connected to the transition chamber and extends along a second axis transverse to the first axis.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: February 4, 2020
    Assignee: HeartWare, Inc.
    Inventors: Charles R. Shambaugh, Mustafa Ertan Taskin
  • Patent number: 10543302
    Abstract: A method of operating an implantable blood pump implanted within a heart of a patient comprising measuring at least one from the group consisting of a current drawn by the implantable blood pump and a blood flow from the implantable blood pump during operation; correlating the at least one from the group consisting the current and the blood flow to a systolic arterial pressure and a diastolic arterial pressure; and adjusting a speed of an impeller of the implantable blood pump relative to a predetermined speed to correspond to an increase the at least one from the group consisting the current during a systolic phase of a cardiac cycle and a decrease in the at least one from the group consisting the current and the blood flow during a diastolic phase of the cardiac cycle.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: January 28, 2020
    Assignee: HeartWare, Inc.
    Inventors: Carlos Reyes, Fernando Casas