Patents Assigned to INVENSENSE
  • Publication number: 20230417907
    Abstract: A device comprises a processor coupled with an ultrasonic transducer which is configured to repeatedly emit ultrasonic pulses during transmit periods which are interspersed with listening windows. Each sequential pair of the transmit periods is separated by a single listening window of the listening windows. During a fixed portion of a listening window of the listening windows the ultrasonic transducer is configured to receive returned signals corresponding to an emitted ultrasonic pulse of the ultrasonic pulses which was transmitted during a transmit period of the transmit periods that immediately preceded the listening window. The processor randomizes an overall length of each listening window of the listening windows. The processor directs filtering of returned signals received during a plurality of the randomized listening windows to achieve filtered returned signals. The processor detects, using the filtered returned signals, a moving object in a field of view of the ultrasonic transducer.
    Type: Application
    Filed: June 9, 2023
    Publication date: December 28, 2023
    Applicant: InvenSense, Inc.
    Inventors: Daniela Hall, Mitchell Kline, Joe Youssef
  • Patent number: 11847851
    Abstract: Microelectromechanical (MEMS) devices and associated methods are disclosed. Piezoelectric MEMS transducers (PMUTs) suitable for integration with complementary metal oxide semiconductor (CMOS) integrated circuit (IC), as well as PMUT arrays having high fill factor for fingerprint sensing, are described.
    Type: Grant
    Filed: February 18, 2022
    Date of Patent: December 19, 2023
    Assignee: INVENSENSE, INC.
    Inventors: Julius Ming-Lin Tsai, Mike Daneman, Sanjiv Kapoor
  • Patent number: 11846648
    Abstract: A microelectromechanical system device is described. The microelectromechanical system device can comprise: a proof mass coupled to an anchor via a spring, wherein the proof mass moves in response to an imposition of an external load to the proof mass, and an overtravel stop comprising a first portion and a second portion.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: December 19, 2023
    Assignee: INVENSENSE, INC.
    Inventors: Matthew Julian Thompson, Robert Walmsley
  • Patent number: 11841228
    Abstract: The subject disclosure provides exemplary 3-axis (e.g., GX, GY, and GZ) linear and angular momentum balanced vibratory rate gyroscope architectures with fully-coupled sense modes. Embodiments can employ balanced drive and/or balanced sense components to reduce induced vibrations and/or part to part coupling. Embodiments can comprise two inner frame gyroscopes for GY sense mode and an outer frame or saddle gyroscope for GX sense mode and drive system coupling, drive shuttles coupled to the two inner frame gyroscopes or outer frame gyroscope, and four GZ proof masses coupled to the inner frame gyroscopes for GZ sense mode. Components can be removed from an exemplary overall architecture to fabricate a single axis or two axis gyroscope and/or can be configured such that a number of proof-masses can be reduced in half from an exemplary overall architecture to fabricate a half-gyroscope. Other embodiments can employ a stress isolation frame to reduce package induced stress.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: December 12, 2023
    Assignee: INVENSENSE, INC.
    Inventors: Doruk Senkal, Robert Hennessy, Houri Johari-Galle, Joe Seeger
  • Patent number: 11844282
    Abstract: A piezoelectric micromachined ultrasonic transducer (PMUT) device includes a substrate having an opening therethrough and a membrane attached to the substrate over the opening. An actuating structure layer on a surface of the membrane includes a piezoelectric layer sandwiched between the membrane and an upper electrode layer. The actuating structure layer is patterned to selectively remove portions of the actuating structure from portions of the membrane to form a central portion proximate a center of the open cavity and three or more rib portions projecting radially outward from the central portion.
    Type: Grant
    Filed: February 26, 2020
    Date of Patent: December 12, 2023
    Assignee: InvenSense, Inc.
    Inventors: Andre Guedes, Fabian Goericke, Stefon Shelton, Benedict Costello, David Horsley
  • Patent number: 11834328
    Abstract: A semiconductor package with design features, including an isolation structure for internal components and a flexible electrical connection, that minimizes errors due to environmental temperature, shock, and vibration effects. The semiconductor package may include a base having a first portion surrounded by a second portion. A connector assembly may be attached to the first portion. The connector assembly may extend through an opening in the base. A lid attached may be attached to, at least, the second portion. The attached lid may form a hermetically-sealed cavity defined by an upper surface of the first portion, the connector assembly, and an inner surface of the lid. An elastomer pad may be on the first portion and a sub-assembly may be on the elastomer pad. A flexible electrical connection may be formed between the connector assembly and the sub-assembly.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: December 5, 2023
    Assignee: InvenSense, Inc.
    Inventors: Hamid Eslampour, Karthik Katingari, Adam Martin
  • Patent number: 11835538
    Abstract: Reducing a sensitivity of an electromechanical sensor is presented herein. The electromechanical sensor comprises a sensitivity with respect to a variation of a mechanical-to-electrical gain of a sense element of the electromechanical sensor; and a voltage-to-voltage converter component that minimizes the sensitivity by coupling, via a defined feedback capacitance, a positive feedback voltage to a sense electrode of the sense element—the sense element electrically coupled to an input of the voltage-to-voltage converter component. In one example, the voltage-to-voltage converter component minimizes the sensitivity by maintaining, via the defined feedback capacitance, a constant charge at the sense electrode. In another example, the electromechanical sensor comprises a capacitive sense element comprising a first node comprising the sense electrode. Further, a bias voltage component can apply a bias voltage to a second node of the electromechanical sensor.
    Type: Grant
    Filed: August 23, 2022
    Date of Patent: December 5, 2023
    Assignee: INVENSENSE, INC.
    Inventors: Joseph Seeger, Pradeep Shettigar
  • Patent number: 11819361
    Abstract: An ultrasonic transducer device comprises a piezoelectric micromachined ultrasonic transducer (PMUT), a transmitter with first and second differential outputs, and a controller. The PMUT includes a membrane layer. A bottom electrode layer, comprising a first bottom electrode and a second bottom electrode, is disposed above the membrane layer. The piezoelectric layer is disposed above the bottom electrode layer. The top electrode layer is disposed above the piezoelectric layer and comprises a segmented center electrode disposed above a center of the membrane layer and a segmented outer electrode spaced apart from the segmented center electrode. The controller, responsive to the PMUT being placed in a transmit mode, is configured to couple the first and second segments of the bottom electrode layer with ground, couple the first output of the transmitter with the segments of the segmented center electrode, and couple the second output with the segments of the segmented outer electrode.
    Type: Grant
    Filed: May 9, 2020
    Date of Patent: November 21, 2023
    Assignee: InvenSense, Inc.
    Inventors: Fabian T. Goericke, Richard J. Przybyla, Benjamin E. Eovino
  • Patent number: 11819879
    Abstract: An ultrasonic transceiver system includes a transmitter block, a receiver block, a state machine, and a computing unit. The transmitter block contains circuitry configured to drive an ultrasound transducer. The receiver block contains circuitry configured to receive signals from the ultrasound transducer and convert the signals into digital data. The state machine is coupled to the transmitter and receiver blocks and contains circuitry configured to act as a controller for those blocks. The computing unit is coupled to the transmitter block, the receiver block, and the state machine and is configured to drive the transmitter block and process data received from the receiver block by executing instructions of a program. The program memory is coupled to the computing unit and is configured to store the program. The computing unit is configured to be reprogrammed with one or more additional programs stored in the program memory.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: November 21, 2023
    Assignee: InvenSense, Inc.
    Inventors: Richard Przybyla, Mitchell Kline, David Horsley
  • Patent number: 11821731
    Abstract: Facilitating minimization of non-linearity effects of a delay of a capacitance-to-voltage (C2V) converter on an output of a gyroscope is presented herein. A sense output signal of a sense mass of the gyroscope and a drive output signal of a drive mass of the gyroscope are electronically coupled to respective analog-to-digital converter (ADC) inputs of bandpass sigma-delta ADCs of the gyroscope. The bandpass sigma-delta ADCs include respective C2V converters that are electronically coupled, via respective feedback loops, to the respective ADC inputs to facilitate reductions of respective propagation delays of the bandpass sigma-delta ADCs. Respective ADC outputs of the bandpass sigma-delta ADCs are electronically coupled to demodulator inputs of a demodulator of the gyroscope that transforms the sense output into an output of the MEMS gyroscope representing an external stimulus that has been applied to the sense mass.
    Type: Grant
    Filed: August 11, 2021
    Date of Patent: November 21, 2023
    Assignee: INVENSENSE, INC.
    Inventors: Carlo Pinna, Sriraman Dakshinamurthy
  • Patent number: 11815354
    Abstract: In a first aspect, the angular rate sensor comprises a substrate and a rotating structure anchored to the substrate. The angular rate sensor also includes a drive mass anchored to the substrate and an element coupling the drive mass and the rotating structure. The angular rate sensor further includes an actuator for driving the drive mass into oscillation along a first axis in plane to the substrate and for driving the rotating structure into rotational oscillation around a second axis normal to the substrate; a first transducer to sense the motion of the rotating structure in response to a Coriolis force in a sense mode; and a second transducer to sense the motion of the sensor during a drive mode. In a second aspect the angular rate sensor comprises a substrate and two shear masses which are parallel to the substrate and anchored to the substrate via flexible elements. In further embodiments, a dynamically balanced 3-axis gyroscope architecture is provided.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: November 14, 2023
    Assignee: INVENSENSE, INC.
    Inventors: Doruk Senkal, Robert Hennessy, Houri Johari-Galle, Joseph Seeger
  • Patent number: 11811904
    Abstract: Technologies are provided for adaptive control of bias settings in a digital microphone. In some embodiments, a device includes a first component that provides data indicative of a clock frequency of operation in a functional mode of a digital microphone. The clock frequency clocks one or more microphone components having switching activity. The device also can include a second component that determines, using the clock frequency, an amount of bias current to supply to at least a first microphone component of the one or more microphone components. The device can further include a memory device that retains control parameters that include at least one of a first subset of parameters defining a relationship between current and frequency and a second subset of parameters defining a quantization of the relationship. The quantization including multiple bias current levels for respective frequency intervals.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: November 7, 2023
    Assignee: INVENSENSE, INC.
    Inventors: Miroslav Svajda, Dusan Vecera, Igor Mucha
  • Patent number: 11802041
    Abstract: An exemplary microelectromechanical system (MEMS) device comprises a plurality of stacked layers, including at least one layer that includes micromechanical components that respond to a force to be measured. Two of the layers may include respective first and second external electrical connection points. A plurality of conductive paths may be disposed in a continuous manner over an external surface of each of the plurality of layers between the first and second external electrical connection points.
    Type: Grant
    Filed: March 8, 2022
    Date of Patent: October 31, 2023
    Assignee: InvenSense, Inc.
    Inventor: Peter George Hartwell
  • Patent number: 11800297
    Abstract: A MEMS sensor includes a through hole to allow communication with an external environment, such as to send or receive acoustic signals or to be exposed to the ambient environment. In addition to the information that is being measured, light energy may also enter the environment of the sensor via the through hole, causing short-term or long-term effects on measurements or system components. A light mitigating structure is formed on or attached to a lid of the MEMS die to absorb or selectively reflect the received light in a manner that limits effects on the measurements or interest and system components.
    Type: Grant
    Filed: October 5, 2021
    Date of Patent: October 24, 2023
    Assignee: InvenSense, Inc.
    Inventors: Roberto Brioschi, Kazunori Hayata, JR-Cheng Yeh, Dinesh Kumar Solanki
  • Patent number: 11789036
    Abstract: A MEMS accelerometer includes proof masses that move in-phase in response to a sensed linear acceleration. Self-test drive circuitry imparts an out-of-phase movement onto the proof masses. The motion of the proof masses in response to the linear acceleration and the self-test movement is sensed as a sense signal on common sense electrodes. Processing circuitry extracts from a linear acceleration signal corresponding to the in-phase movement due to linear acceleration and a self-test signal corresponding to the out-of-phase movement due to the self-test drive signal.
    Type: Grant
    Filed: March 15, 2022
    Date of Patent: October 17, 2023
    Assignee: InvenSense, Inc.
    Inventors: Kevin Hughes, Giacomo Laghi, Vito Avantaggiati
  • Patent number: 11774585
    Abstract: A device comprises a processor coupled with an ultrasonic transducer coupled which is configured to emit an ultrasonic pulse and receive returned signals received after a ringdown period of the transducer and corresponding to the emitted ultrasonic pulse. The processor is configured to evaluate the returned signals to find a candidate echo, from an object located in a ringdown blind spot area, in a time window between one and two times the ringdown period; locate multiple echoes from the object of higher order than the candidate echo; validate the candidate echo as at least a secondary echo associated of the object; and determine, based on analysis of the returned signals, an estimated distance from the transducer to the object in the ringdown blind spot area, wherein the ringdown blind spot area is located between the transducer and a closest distance at which objects can be sensed by the transducer.
    Type: Grant
    Filed: December 26, 2021
    Date of Patent: October 3, 2023
    Assignee: InvenSense, Inc.
    Inventors: Florence Gris, Agnes Duval
  • Patent number: 11768122
    Abstract: A device includes a housing unit with an internal volume. The device further includes a sensor coupled to a substrate via an electrical coupling, wherein the sensor is disposed within the internal volume of the housing unit, and wherein the sensor is in communication with an external environment of the housing unit from a side other than a side associated with the substrate. The device also includes a moisture detection unit electrically coupled to the sensor, wherein the moisture detection unit comprises at least two looped wires at different heights, and wherein the moisture detection unit is configured to detect presence of a moisture within an interior environment of the housing unit when the moisture detection unit becomes in direct contact with the moisture.
    Type: Grant
    Filed: October 12, 2022
    Date of Patent: September 26, 2023
    Assignee: InvenSense, Inc.
    Inventors: Calin Miclaus, Chung-Hsien Lin, Jye Ren, Tim Piessens, Pei-Wen Yen, Manish Sharma-Kulamarva
  • Patent number: 11761977
    Abstract: A MEMS sensor includes a central anchoring region that maintains the relative position of an attached proof mass relative to sense electrodes in the presence of undesired forces and stresses. The central anchoring region includes one or more first anchors that rigidly couple to a cover substrate and a base substrate. One or more second anchors are rigidly coupled to only the cover substrate and are connected to the one or more first anchors within the MEMS layer via an isolation spring. The proof mass in turn is connected to the one or more second anchors via one or more compliant springs.
    Type: Grant
    Filed: April 29, 2022
    Date of Patent: September 19, 2023
    Assignee: InvenSense, Inc.
    Inventors: Varun Subramaniam Kumar, Mrigank Sharma, Giacomo Laghi, Luca Coronato, Matthew Julian Thompson
  • Patent number: 11760627
    Abstract: A microelectromechanical system (MEMS) sensor package includes a laminate that provides physical support and electrical connection to a MEMS sensor. A resin layer is embedded within an opening of the laminate and a MEMS support layer is embedded within the opening by the resin layer. A MEMS structure of the MEMS sensor is located on the upper surface of the MEMS support layer.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: September 19, 2023
    Assignee: InvenSense, Inc.
    Inventors: Roberto Brioschi, Benyamin Gholami Bazehhour, Milena Vujosevic, Kazunori Hayata
  • Patent number: 11754397
    Abstract: Microelectromechanical systems (MEMS) gyroscopes and related sense frequency tracking techniques are described. Various embodiments facilitate sense frequency tracking and offset and/or sensitivity change compensation. Exemplary embodiments can comprise receiving a sense signal at an output of a MEMS gyroscope and determining a sense resonant frequency of the sense signal. In addition, exemplary methods can comprise generating an input sine wave with a frequency of the sense resonant frequency of the sense signal injecting the input sine wave into the MEMS gyroscope, to facilitate sense frequency tracking.
    Type: Grant
    Filed: May 11, 2021
    Date of Patent: September 12, 2023
    Assignee: INVENSENSE, INC.
    Inventors: Sriraman Dakshinamurthy, Carlo Pinna, Ronak Chetan Desai