Patents Assigned to INVENSENSE
  • Publication number: 20230104773
    Abstract: A hearable comprises a wearable structure including a speaker, a sensor, and a temperature compensating circuit which measures temperature in an environment of the sensor. A portion of the wearable structure, which includes the sensor and temperature compensating circuit, is disposed within a user’s ear when in use. A sensor processing unit which is communicatively coupled with the temperature compensating circuit: acquires temperature data from the temperature compensating circuit while the portion of the wearable structure is disposed within the ear of the user; builds a baseline model of normal temperature for the user; and compares a temperature measurement acquired from the temperature compensating circuit to the baseline model. In response to the comparison showing a deviation beyond a preset threshold from the baseline model, the sensor processing unit generates a health indicator for the user which is used to monitor an aspect of health of the user.
    Type: Application
    Filed: December 2, 2022
    Publication date: April 6, 2023
    Applicant: InvenSense, Inc.
    Inventors: Ilya GURIN, Karthik Katingari, Nicolas Sauvage, Jibran Ahmed
  • Patent number: 11618674
    Abstract: A method including fusion bonding a handle wafer to a first side of a device wafer. The method further includes depositing a hardmask on a second side of the device wafer, wherein the second side is planar. An etch stop layer is deposited over the hardmask and an exposed portion of the second side of the device wafer. A dielectric layer is formed over the etch stop layer. A via is formed within the dielectric layer. The via is filled with conductive material. A eutectic bond layer is formed over the conductive material. Portions of the dielectric layer uncovered by the eutectic bond layer is etched to expose the etch stop layer. The exposed portions of the etch stop layer is etched. A micro-electro-mechanical system (MEMS) device pattern is etched into the device wafer.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: April 4, 2023
    Assignee: InvenSense, Inc.
    Inventors: Daesung Lee, Alan Cuthbertson
  • Patent number: 11619492
    Abstract: Methods and systems for compensation of a microelectromechanical system (MEMS) sensor may include associating test temperature values with input test signal values, identifying temperature-input signal pairs, and applying one of the test temperature values and one of the test signal values to the MEMS sensor. Desired output signal values may be determined, with each of the desired output signal values corresponding to one of the applied temperature-input signal pairs. Measured output signal values from the MEMS sensor may be measured, with each of the measured output signal values corresponding to one of the applied temperature-input signal pairs. Compensation terms may be determined based on the plurality of temperature-input signal pairs, the corresponding plurality of measured output signal values, and the corresponding plurality of desired output signal values. Compensation terms may be used to modify a sense signal of the MEMS sensor.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: April 4, 2023
    Assignee: InvenSense, Inc.
    Inventor: Vito Avantaggiati
  • Publication number: 20230068608
    Abstract: A retinal projection display system includes at least one visible light source for projecting a visible light image, an infrared light source for projecting infrared light, a scanning mirror having a field of view larger than the visible light image, a reflective surface on which the visible light image is projected and on which the infrared light is reflected at least partially towards an eye of a user, wherein the reflective surface is larger than the visible light image, at least one infrared photodetector for receiving reflected infrared light that reflects off of the eye of the user, and a hardware computation module comprising a processor and a memory, the hardware computation module configured to determine a gaze direction of the user based at least in part on the reflected infrared light.
    Type: Application
    Filed: August 26, 2022
    Publication date: March 2, 2023
    Applicant: InvenSense, Inc.
    Inventors: Ardalan HESHMATI, Hideaki FUKUZAWA
  • Publication number: 20230067383
    Abstract: An ultrasonic transducer array including a substrate, a membrane overlying the substrate, the membrane configured to allow movement at ultrasonic frequencies, and a plurality of anchors connected to the substrate and connected to the membrane. The membrane includes a piezoelectric layer, a plurality of first electrodes, and a plurality of second electrodes, wherein each ultrasonic transducer of a plurality of ultrasonic transducers includes at least a first electrode and at least a second electrode. The plurality of anchors includes a first anchor including a first electrical connection for electrically coupling at least one first electrode to control circuitry and a second anchor including a second electrical connection for electrically coupling at least one second electrode. The ultrasonic transducer array could be either a two-dimensional array or a one-dimensional array of ultrasonic transducers.
    Type: Application
    Filed: August 24, 2022
    Publication date: March 2, 2023
    Applicant: InvenSense, Inc.
    Inventors: Leonardo BALDASARRE, Alessandro COLOMBO, Federica CONFALONIERI, Marco TRAVAGLIATI
  • Publication number: 20230065212
    Abstract: An ultrasonic transducer device including a substrate, an edge support structure connected to the substrate, and a membrane connected to the edge support structure such that a cavity is defined between the membrane and the substrate, the membrane configured to allow movement at ultrasonic frequencies. The membrane includes a structural layer, a piezoelectric layer having a first surface and a second surface, a first electrode placed on the first surface of the piezoelectric layer, wherein the first electrode is located at the center of the membrane, a second electrode placed on the first surface of the piezoelectric layer, wherein the second electrode is a patterned electrode comprising more than one electrode components that are electrically coupled, and a third electrode coupled to the second surface of the piezoelectric layer and electrically coupled to ground.
    Type: Application
    Filed: August 24, 2022
    Publication date: March 2, 2023
    Applicant: InvenSense, Inc.
    Inventors: Leonardo BALDASARRE, Alessandro COLOMBO, Federica CONFALONIERI, Marco TRAVAGLIATI
  • Publication number: 20230054450
    Abstract: A retinal projection display system includes a light source for projecting an image, a scanning mirror having a field of view larger than the image, and a reflective surface on which the image is projected, wherein the reflective surface is larger than the image. The scanning mirror projects the image onto a viewable region of the reflective surface such that the image is projected into a retina of a user.
    Type: Application
    Filed: August 18, 2022
    Publication date: February 23, 2023
    Applicant: InvenSense, Inc.
    Inventors: Ardalan HESHMATI, Hideaki FUKUZAWA
  • Patent number: 11584638
    Abstract: A sensor can comprise a sensor die with a first sensor surface and a second sensor surface opposite to the first sensor surface. The sensor can further comprise a die pad component with a first pad surface and a second pad surface opposite to the first pad surface, wherein the sensor die is vertically stacked with the die pad component, with the second sensor surface oriented toward the first pad surface. The sensor can further comprise a lead frame component with a first frame surface and a second frame surface opposite to the first frame surface, the die pad component is vertically stacked with the lead frame component, wherein the second pad surface is oriented toward the first frame surface, the second pad surface is isolated from the second frame surface, and the lead frame component is electrically connected to the sensor die.
    Type: Grant
    Filed: July 30, 2020
    Date of Patent: February 21, 2023
    Assignee: INVENSENSE, INC.
    Inventor: Efren Lacap
  • Patent number: 11577276
    Abstract: A piezoelectric micromachined ultrasonic transducer (PMUT) device includes a layer of piezoelectric material that is activated and sensed by an electrode and a conductive plane layer. The conductive plane layer may be electrically connected to processing circuitry by a via that extends through the piezoelectric layer. One or more isolation trenches extend through the conductive plane layer to isolate the conductive plane layer from other conductive plane layers of adjacent PMUT devices of a PMUT array.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: February 14, 2023
    Assignee: INVENSENSE, INC.
    Inventor: Chienliu Chang
  • Patent number: 11563166
    Abstract: An array of piezoelectric micromachined ultrasound transducers (PMUTs) has a layer of piezoelectric material that requires poling during fabrication in order to properly align the piezoelectric dipoles to create a desired ultrasonic signal. The PMUT may have an interconnected set of lower electrodes that are fabricated between a processing layer of the PMUT and the piezoelectric layer. An upper electrode is fabricated overlaying the piezoelectric layer, and a poling voltage is applied between the upper electrode and the interconnected set of lower electrodes. After poling is complete, portions of the interconnected set of lower electrodes are removed to permanently isolate permanent lower electrodes from each other.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: January 24, 2023
    Assignee: INVENSENSE, INC.
    Inventor: Chienliu Chang
  • Patent number: 11548780
    Abstract: An exemplary microelectromechanical device includes a MEMS layer, portions of which respond to an external force in order to measure the external force. A substrate layer is located below the MEMS layer and an anchor couples the substrate layer and MEMS layer to each other. A plurality of temperature sensors are located within the substrate layer to identify a temperature gradient being experienced by the MEMS device. Compensation is performed or operations of the MEMS device are modified based on temperature gradient.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: January 10, 2023
    Assignee: InvenSense, Inc.
    Inventors: David deKoninck, Varun Subramaniam Kumar, Matthew Julian Thompson, Vadim Tsinker, Logeeswaran Veerayah Jayaraman, Sarah Nitzan, Houri Johari-Galle, Jongwoo Shin, Le Jin
  • Patent number: 11542154
    Abstract: A method includes fusion bonding a handle wafer to a first side of a device wafer. The method further includes depositing a first mask on a second side of the device wafer, wherein the second side is planar. A plurality of dimple features is formed on an exposed portion on the second side of the device wafer. The first mask is removed from the second side of the device wafer. A second mask is deposited on the second side of the device wafer that corresponds to a standoff. An exposed portion on the second side of the device wafer is etched to form the standoff. The second mask is removed. A rough polysilicon layer is deposited on the second side of the device wafer. A eutectic bond layer is deposited on the standoff. In some embodiments, a micro-electro-mechanical system (MEMS) device pattern is etched into the device wafer.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: January 3, 2023
    Assignee: InvenSense, Inc.
    Inventors: Ashfaque Uddin, Daesung Lee, Alan Cuthbertson
  • Patent number: 11543229
    Abstract: The present disclosure relates to measuring misalignment between layers of a semiconductor device. In one embodiment, a device includes a first conductive layer; a second conductive layer; one or more first electrodes embedded in the first conductive layer; one or more second electrodes embedded in the second conductive layer; a sensing circuit connected to the one or more first electrodes; and a plurality of time-varying signal sources connected to the one or more second electrodes, wherein the one or more first electrodes and the one or more second electrodes form at least a portion of a bridge structure that exhibits an electrical property that varies as a function of misalignment of the first conductive layer and the second conductive layer in an in-plane direction.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: January 3, 2023
    Assignee: INVENSENSE, INC.
    Inventors: Ilya Gurin, Leonardo Baldasarre
  • Patent number: 11543486
    Abstract: Time of flight between two or more ultrasonic transceivers is measured using known delays. First and second transceivers are duty cycled, each having a respective receive period that is less than a measurement period during which the transceivers are configured to receive transmissions. An ultrasonic trigger pulse is transmitted by the first transceiver. The second transceiver, upon receiving the trigger pulse, transmits an ultrasonic response pulse after a first predefined delay time that is known to the first transceiver and greater than the receive period of the second transceiver. Subsequently, the first transceiver receives the ultrasonic response pulse and determines a receive time. The first transceiver determines the distance between the first transceiver and the second transceiver from a speed of sound, an elapsed time between the time of transmission of the trigger pulse and the receive time, and the first predetermine delay time.
    Type: Grant
    Filed: January 22, 2021
    Date of Patent: January 3, 2023
    Assignee: InvenSense, Inc.
    Inventors: Richard J. Przybyla, Ryan Young, Mitchell H. Kline, David A. Horsley
  • Patent number: 11529838
    Abstract: Vehicle body tilt, representing a difference between a vehicle body frame of reference and a wheel-base frame of reference, is determined by obtaining information from sensor assemblies for the vehicle body and for the wheel-base. Navigational solutions are generated for the sensor assemblies using motion sensor data from the assemblies and absolute navigational information. Correspondingly, vehicle body tilt is determined based at least in part on the vehicle body navigation solution and the wheel-base navigation solution.
    Type: Grant
    Filed: April 15, 2020
    Date of Patent: December 20, 2022
    Assignee: InvenSense, Inc.
    Inventors: Jacques Georgy, Christopher Goodall, Abdelrahman Ali, Amr Al-Hamad, Anas Mahmoud, Billy Cheuk Wai Chan, Medhat Omr
  • Patent number: 11517252
    Abstract: A hearable comprises at least one microphone coupled with a wearable structure and a sensor processing unit disposed within the wearable structure and coupled with the microphone. A portion of the wearable structure is configured to be disposed within a user's ear. The sensor processing unit acquires audio data from the at least one microphone and head motion data from at least one motion sensor of the sensor processing unit. The head motion data describes motions of the user's head and comprises cranium motion data and mandible motion data. The sensor processing unit separates the mandible motion data from the head motion data, synchronizes the mandible motion data and the audio data into a synchronized data stream; classifies an activity of the head during a portion of the synchronized data stream; and generates a health indicator for the user based on the activity and the synchronized data stream.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: December 6, 2022
    Assignee: INVENSENSE, INC.
    Inventors: Jibran Ahmed, Karthik Katingari, Nicolas Sauvage
  • Patent number: 11517938
    Abstract: An electronic device includes a substrate layer having a front surface and a back surface opposite the front surface, a plurality of ultrasonic transducers formed on the front surface of the substrate layer, wherein the plurality of ultrasonic transducers generate backward waves during operation, the backward waves propagating through the substrate layer, and a plurality of substrate structures formed within the back surface of the substrate layer, the plurality of substrate structures configured to modify the backward waves during the operation.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: December 6, 2022
    Assignee: InvenSense, Inc.
    Inventors: Mei-Lin Chan, Nikhil Apte, Renata Melamud Berger
  • Patent number: 11515465
    Abstract: A piezoelectric micromachined ultrasound transducer (PMUT) array may comprise PMUT devices with respective piezoelectric layers and electrode layers. Parasitic capacitance can be reduced when an electrode layer is not shared across PMUT devices but may expose the devices to electromagnetic interference (EMI). A conductive layer located within the structural layer or on a shared plane with the electrode layers may reduce EMI affecting the PMUT array operation.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: November 29, 2022
    Assignee: INVENSENSE, INC.
    Inventors: Nikhil Apte, Chienliu Chang, Shreyas Thakar, Mei-Lin Chan
  • Patent number: 11507163
    Abstract: Facilitating powering up/down respective analog circuits of mixed-signal devices utilizing a reconfigurable power sequencer component and corresponding reconfigurable sequencer processing unit(s) is presented herein. A system can comprise a mixed-signal component comprising a group of analog circuits comprising respective inputs to facilitate a power-up and a power-down of respective portions of the analog circuits; and a reconfigurable power sequencer component that obtains, from a reconfigurable memory of the system, reprogrammable information representing respective timed sequences of digital outputs electronically coupled to the respective inputs of the group of analog circuits, and based on the reprogrammable information, generates the respective timed sequences of the digital outputs to facilitate the power-up and the power-down of the respective portions of the analog circuits.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: November 22, 2022
    Assignee: INVENSENSE, INC.
    Inventors: Giuseppe Santillo, Biswajit Datta
  • Patent number: 11508346
    Abstract: A package design for a micromachined ultrasound transducer (MUT) utilizing curved geometry to control the presence and frequency of acoustic resonant modes is described. The approach consists of reducing in number and curving the reflecting surfaces present in the package cavity to adjust the acoustic resonant frequencies to locations outside the band of interest. The design includes a cavity characterized by a curved geometry and a MUT mounted to a side of a substrate facing the cavity with a sound emitting portion of the MUT facing an opening in the substrate. The substrate is disposed over an opening of the cavity with the substrate oriented such that the MUT located within the cavity.
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: November 22, 2022
    Assignee: InvenSense, Inc.
    Inventors: Stefon Shelton, Andre Guedes, David Horsley