Patents Assigned to Japan Petroleum Exploration Co., Ltd.
  • Patent number: 11873703
    Abstract: A method of underground storage of an injection gas containing CO2 gas and enhanced oil recovery includes: supplying injection water through a water flow path; jetting the injection water as a high-pressure water jet which is increased in velocity by narrowing a fluid flow through a fine bubble-generating device placed at a lower end of the water flow path; suctioning an injection gas through a gas flow path by a negative pressure generated by the Venturi effect downstream of the high-pressure water jet; jetting the injection gas as fine bubbles from the fine bubble-generating device placed at a lower end of the gas flow path; and performing underground storage of the injection gas by allowing a gas-liquid mixed fluid containing fine bubbles generated by mixing the injection water with the fine bubbles in the fine bubble-generating device to penetrate into a permeable formation such as an oil reservoir.
    Type: Grant
    Filed: February 15, 2022
    Date of Patent: January 16, 2024
    Assignee: JAPAN PETROLEUM EXPLORATION CO., LTD.
    Inventors: Yoshihiro Terao, Kazuto Kurosawa
  • Patent number: 11493393
    Abstract: An in-situ stress measurement method is provided. The method includes measuring a length of a maximum diameter at which an amount of distortion relative to a diameter of a standard circle of a measurement cross section of a boring core is largest and a length of a minimum diameter at which the amount of distortion relative to the diameter of the standard circle is smallest based on a shape of the measurement cross section of the boring core; measuring a length of a diameter in a vertical direction and a length of a diameter in a horizontal direction of the measurement cross section of a side-wall core acquired by hollowing ground in a well in an excavation direction thereof, based on a shape of the measurement cross section of the side-wall core; and calculating a maximum horizontal stress and a minimum horizontal stress by first and second equations.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: November 8, 2022
    Assignees: JAPAN PETROLEUM EXPLORATION CO., LTD., TOHOKU UNIVERSITY
    Inventors: Takatoshi Ito, Kazuhiko Tezuka, Tetsuya Tamagawa
  • Patent number: 10994758
    Abstract: A transportation management system for a tank container allowed to be placed on a container freight car, the tank container including a vessel capable of accommodating liquefied natural gas and a frame body which supports the vessel, the transportation management system includes a vessel management device and a transportation management device to communicate with the vessel management device. The vessel management device includes a vessel information detection unit to detect vessel information of the vessel included in the tank container, and a vessel management device-side communication unit to transmit the vessel information detected by the vessel information detection unit to the transportation management device.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: May 4, 2021
    Assignee: JAPAN PETROLEUM EXPLORATION CO., LTD.
    Inventors: Momoyo Yuki, Akihisa Takahashi, Masao Toyosaki, Takehito Tsuji, Makoto Ozaki
  • Patent number: 10076773
    Abstract: The method for cleaning a reactor of the present invention comprises passing a solvent through a wax-fraction hydrocracking apparatus which is charged with a catalyst and to which supply of a wax fraction is stopped, wherein the solvent comprising at least one oil selected from a group consisting of hydrocarbon and vegetable oils, and having a sulfur content of less than 5 ppm and being in a liquid state at 15° C.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: September 18, 2018
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Shinya Takahashi, Kazuhiko Tasaka, Yuichi Tanaka, Marie Iwama
  • Patent number: 9920256
    Abstract: There is provided a hydrocarbon distillation separation apparatus for fractionally distilling hydrocarbon compounds discharged from a Fisher-Tropsch synthesis reactor synthesizing hydrocarbon compounds, comprising a heavy hydrocarbon fractionator configured to fractionally distil liquid heavy components of the hydrocarbon compounds discharged from the reactor into a first middle distillate and a wax fraction, a light hydrocarbon fractionator configured to fractionally distil gaseous light components of the hydrocarbon compounds discharged from the reactor into a second middle distillate and a light gas fraction, a light hydrocarbon separator configured to separate hydrocarbon compounds equivalent to naphtha from the light gas fraction; and a mixing section configured to mix the first and second middle distillates, and the hydrocarbon compounds equivalent to naphtha separated from the light gas fraction by the light hydrocarbon separator.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: March 20, 2018
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL ENGINEERING CO., LTD.
    Inventors: Yuichi Tanaka, Yasumasa Morita, Kenichi Kawazuishi
  • Patent number: 9884998
    Abstract: A synthesis gas production apparatus (reformer) to be used for a synthesis gas production step in a GTL (gas-to-liquid) process is prevented from being contaminated by metal components. A method of suppressing metal contamination of a synthesis gas production apparatus operating for a GTL process that includes a synthesis gas production step of producing synthesis gas by causing natural gas and gas containing steam and/or carbon dioxide to react with each other for reforming in a synthesis gas production apparatus in which, at the time of separating and collecting a carbon dioxide contained in the synthesis gas produced in the synthesis gas production step and recycling the separated and collected carbon dioxide as source gas for the reforming reaction in the synthesis gas production step, a nickel concentration in the recycled carbon dioxide is not higher than 0.05 ppmv.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: February 6, 2018
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., CHIYODA CORPORATION
    Inventors: Shuhei Wakamatsu, Fuyuki Yagi, Tomoyuki Mikuriya, Kenichi Kawazuishi
  • Patent number: 9845435
    Abstract: Provided is a hydrotreating step (A) containing a hydroisomerization step (A1) that obtains a hydroisomerized oil (a1) by bringing a FT synthesis oil into contact with a hydroisomerization catalyst and/or a hydrocracking step (A2) that obtains a hydrocracked oil (a2) by bringing it into contact with a hydrocracking catalyst, and a fractionation step (B) that transfers at least a portion of the hydrotreated oil (a) composed of the hydroisomerized oil (a1) and/or the hydrocracked oil (a2) to a fractionator and, at the very least, obtains a middle distillate (b1) with a 5% distillation point of 130 to 170° C. and a 95% distillation point of 240 to 300° C., and a heavy oil (b2) that is heavier than the middle distillate (b1).
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: December 19, 2017
    Assignees: Japan Oil, Gas and Metals National Corporation, INPEX CORPORATION, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Takuya Niitsuma, Marie Iwama
  • Patent number: 9839904
    Abstract: The present invention provides a method for producing a hydroprocessing catalyst including a supporting step of allowing a catalyst support having a content of a carbonaceous substance containing carbon atoms of 0.5% by mass or less in terms of carbon atoms to support an active metal component containing at least one active metal element selected from metals belonging to Group 6, Group 8, Group 9 and Group 10 in the periodic table, to obtain a catalyst precursor, and a calcining step of calcining the catalyst precursor obtained in the supporting step to obtain the hydroprocessing catalyst.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: December 12, 2017
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventor: Marie Iwama
  • Patent number: 9776160
    Abstract: A catalyst recovery system that includes a concentrated slurry production unit that concentrates a slurry extracted from a reactor main unit and continuously produces a concentrated slurry, a first discharge unit that discharges the concentrated slurry from the concentrated slurry production unit, a solidified slurry production unit that cools the concentrated slurry discharged from the concentrated slurry production unit, thereby solidifying the liquid medium within the concentrated slurry and producing a solidified slurry, and a recovery mechanism that recovers the solidified slurry from the solidified slurry production unit.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: October 3, 2017
    Assignees: Japan Oil, Gas and Metals National Corporation, INPEX CORPORATION, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Toshiyuki Shibata, Hidekatsu Honda, Akira Kawamura
  • Patent number: 9725656
    Abstract: A synthesis gas production apparatus (reformer) to be used for a synthesis gas production step in a GTL (gas-to-liquid) process is prevented from being contaminated by metal components. A method of suppressing metal contamination of a synthesis gas production apparatus operating for a GTL process that includes a synthesis gas production step of producing synthesis gas by causing natural gas and gas containing steam and/or carbon dioxide to react with each other for reforming in a synthesis gas production apparatus in which, at the time of separating and collecting a carbon dioxide contained in the synthesis gas produced in the synthesis gas production step and recycling the separated and collected carbon dioxide as source gas for the reforming reaction in the synthesis gas production step, a nickel concentration in the recycled carbon dioxide is not higher than 0.05 ppmv.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: August 8, 2017
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., CHIYODA CORPORATION
    Inventors: Shuhei Wakamatsu, Fuyuki Yagi, Tomoyuki Mikuriya, Kenichi Kawazuishi
  • Patent number: 9725665
    Abstract: A process for producing a kerosene base fuel according to the present invention comprises removing paraffins having carbon number of 7 or less from a first fraction having an initial boiling point of 95 to 140° C. and a final boiling point of 240 to 280° C. obtained from a hydrotreated oil of a Fischer-Tropsch synthetic oil to obtain a second fraction having a content of paraffins having carbon number of 7 or less of 0.1 to 0.7% by mass.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: August 8, 2017
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventor: Takuya Niitsuma
  • Patent number: 9688917
    Abstract: In the hydrocarbon-producing apparatus, a vapor-liquid separation tank of a second vapor-liquid separation unit is provided with a filling material layer. A vapor-liquid separation tank of the first vapor-liquid separation unit has a first return line. The vapor-liquid separation tank of the second vapor-liquid separation unit has a second return line. A light component of light oil discharged from a bottom of the vapor-liquid separation tank is returned to a portion between a top side above a return-location from the second return line within the vapor-liquid separation tank of the second vapor-liquid separation unit, and a line directly connected with a cooler installed on the first vapor-liquid separation unit through the first return line. A heavy component of light oil discharged from a bottom of the vapor-liquid separation tank of the second vapor-liquid separation unit is returned to the filling material layer through the second return line.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: June 27, 2017
    Assignees: Japan Oil, Gas and Metals National Corporation, INPEX CORPORATION, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Yukifumi Ishito, Junichi Inoue, Masaki Shingu, Haruki Nagano, Kazuhiko Tasaka
  • Patent number: 9688918
    Abstract: The hydrocarbon synthesis reaction apparatus according to the present invention includes a reaction vessel that brings a synthesis gas having carbon monoxide gas and hydrogen gas as main components into contact with a slurry having a solid catalyst suspended in a liquid hydrocarbon compound to synthesize a liquid hydrocarbon compound using a Fischer-Tropsch reaction; a filter that is provided within the reaction vessel and is configured to separate the liquid hydrocarbon compound from the catalyst; and a powdered catalyst particles-discharging device configured to discharge powdered catalyst particles in the solid catalyst in the slurry to the outside of the reaction vessel.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: June 27, 2017
    Assignees: Japan Oil, Gas and Metals National Corporation, INPEX CORPORATION, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO.
    Inventors: Atsushi Murata, Eiichi Yamada, Kazuki Murahashi, Yuzuru Kato, Yasuhiro Onishi
  • Publication number: 20170009153
    Abstract: Hydrocarbon oil obtained by Fischer-Tropsch (FT) synthesis reaction using a catalyst within a slurry bed reactor is fractionated into a distilled oil and a column bottom oil in a rectifying column, part of the column bottom oil is flowed into a first transfer line that connects a column bottom of the rectifying column to a hydrocracker, at least part of the column bottom oil is flowed into a second transfer line branched from the first transfer line and connected to the first transfer line downstream of the branching point, the amount of the catalyst fine powder to be captured is monitored while the catalyst fine powder in the column bottom oil that flows in the second transfer line are captured by a detachable filter provided in the second transfer line, and the column bottom oil is hydrocracked within the hydrocracker.
    Type: Application
    Filed: September 22, 2016
    Publication date: January 12, 2017
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Kazuhiko TASAKA, Yuichi TANAKA, Marie IWAMA
  • Patent number: 9513051
    Abstract: There is provided a method for recovering hydrocarbon compounds from a gaseous by-products generated in the Fisher-Tropsch synthesis reaction, the method comprising a pressurizing step in which the gaseous by-products are pressurized, a cooling step in which the pressurized gaseous by-products are pressurized to liquefy hydrocarbon compounds in the gaseous by-products, and a separating step in which the hydrocarbon compounds liquefied in the cooling step are separated from the remaining gaseous by-products.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: December 6, 2016
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventor: Kazuhiko Tasaka
  • Patent number: 9499453
    Abstract: A catalyst filling apparatus is for a bubble column slurry bed reactor for the FT synthesis reaction. The apparatus includes: a slurry preparation tank installed adjacent to the reactor and configured to prepare a slurry S from a FT synthesis reaction catalyst and a slurry preparation oil; an upper part communication line configured to direct the slurry from the reactor to the slurry preparation tank; a lower part communication line configured to direct the slurry in the slurry preparation tank to the reactor; and a pressure equalizing line configured to communicate the reactor with the slurry preparation tank. The upper part communication line is downwardly inclined from the reactor toward the slurry preparation tank, and the lower part communication line is upwardly inclined from the reactor toward the slurry preparation tank. An inert gas introduction device is provided on the slurry preparation tank.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: November 22, 2016
    Assignees: Japan Oil, Gas and Metals National Corporation, INPEX CORPORATION, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., COSMO OIL CO., LTD., NIPPON STEEL & SUMKIN ENGINEERING CO., LTD.
    Inventor: Kazuhiko Tasaka
  • Patent number: 9493714
    Abstract: Hydrocarbon oil obtained by Fischer-Tropsch (FT) synthesis reaction using a catalyst within a slurry bed reactor is fractionated into a distilled oil and a column bottom oil in a rectifying column, part of the column bottom oil is flowed into a first transfer line that connects a column bottom of the rectifying column to a hydrocracker, at least part of the column bottom oil is flowed into a second transfer line branched from the first transfer line and connected to the first transfer line downstream of the branching point, the amount of the catalyst fine powder to be captured is monitored while the catalyst fine powder in the column bottom oil that flows in the second transfer line are captured by a detachable filter provided in the second transfer line, and the column bottom oil is hydrocracked within the hydrocracker.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: November 15, 2016
    Assignees: JAPAN OIL, GAS, AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Kazuhiko Tasaka, Yuichi Tanaka, Marie Iwama
  • Patent number: 9487713
    Abstract: The present invention provides a method for producing a hydrocarbon oil, including performing a hydrocracking by continuously feeding, to a hydrocracking reactor containing a hydrocracking catalyst, a wax to be processed including: a raw wax containing 70% by mass or more of straight-chain hydrocarbons with a boiling point of higher than 360° C; and an uncracked wax containing 70% by mass or more of straight-chain hydrocarbons with a boiling point of higher than 360° C, which uncracked wax is separated from a hydrocracking product discharged from the reactor, to thereby yield a hydrocarbon oil including hydrocarbons with a boiling point of 360° C or lower.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: November 8, 2016
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Marie Iwama, Kazuhiko Tasaka, Yuichi Tanaka
  • Patent number: 9486734
    Abstract: The helium gas separator material includes a base portion and a gas separation portion joined to the base portion. The base portion is composed of a porous ?-alumina material which has communication holes with an average diameter of 50 nm to 1,000 nm; the gas separation portion has a porous ?-alumina portion containing a Ni element and a silica membrane portion which is disposed on the inner wall of the communication holes in the porous portion; and the average diameter of pores surrounded and formed by the silica membrane portion is 0.27 nm to 0.60 nm.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: November 8, 2016
    Assignees: Japan Petroleum Exploration Co., Ltd., Japan Fine Ceramics Center
    Inventors: Takayuki Nagano, Koji Sato, Kazumoto Chiba, Toshiya Wakatsuki, Yusuke Takeuchi
  • Patent number: 9475036
    Abstract: The hydrotreating catalyst of the present invention is a hydrotreating catalyst including a catalyst support including an amorphous composite metal oxide having solid acidity, and at least one active metal supported by the catalyst support and selected from noble metals of Group 8 to Group 10 in the periodic table, wherein the hydrotreating catalyst contains a carbonaceous substance including a carbon atom, and the content of the carbonaceous substance in the hydrotreating catalyst is 0.05 to 1% by mass in terms of the carbon atom.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: October 25, 2016
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Yuichi Tanaka, Takuya Niitsuma, Kazuhiko Tasaka, Marie Iwama