Patents Assigned to Japan Petroleum Exploration Co., Ltd.
  • Patent number: 9458387
    Abstract: A Fischer-Tropsch synthesis reaction catalyst includes a catalyst support containing a silica and zirconium oxide in an amount of 0.5 to 14% by mass based on the mass of the catalyst support, and cobalt metal and a cobalt oxide supported on the catalyst support in an amount equivalent to 10 to 40% by mass of tricobalt tetroxide based on the mass of the catalyst, wherein the degree of reduction of the cobalt atoms is within a range from 75 to 93%, and the amount of hydrogen gas adsorption per unit mass of the catalyst at 100° C. is within a range from 0.40 to 1.0 ml/g.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: October 4, 2016
    Assignees: Japan Oil, Gas and Metals National Corporation, INPEX CORPORATION, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Yoshiyuki Nagayasu, Hideki Ono, Kazuaki Hayasaka, Mayumi Yokoi
  • Patent number: 9452405
    Abstract: A liquid-fuel synthesizing method includes a synthesizing step of synthesizing liquid fuels by making a synthesis gas including a carbon monoxide gas and a hydrogen gas as the main components and a slurry having solid catalyst particles suspended in a liquid react with each other in a reactor, and a synthesis gas supply step of supplying the synthesis gas to the reactor from a plurality of supply devices provided in the reactor so as to have different heights.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: September 27, 2016
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL ENGINEERING CO., LTD.
    Inventors: Yasuhiro Onishi, Akihiko Hirama
  • Publication number: 20160272895
    Abstract: A synthesis gas production apparatus (reformer) to be used for a synthesis gas production step in a GTL (gas-to-liquid) process is prevented from being contaminated by metal components. A method of suppressing metal contamination of a synthesis gas production apparatus operating for a GTL process that includes a synthesis gas production step of producing synthesis gas by causing natural gas and gas containing steam and/or carbon dioxide to react with each other for reforming in a synthesis gas production apparatus in which, at the time of separating and collecting a carbon dioxide contained in the synthesis gas produced in the synthesis gas production step and recycling the separated and collected carbon dioxide as source gas for the reforming reaction in the synthesis gas production step, a nickel concentration in the recycled carbon dioxide is not higher than 0.05 ppmv.
    Type: Application
    Filed: June 1, 2016
    Publication date: September 22, 2016
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD., CHIYODA CORPORATION
    Inventors: Shuhei Wakamatsu, Fuyuki Yagi, Tomoyuki Mikuriya, Kenichi Kawazuishi
  • Patent number: 9441165
    Abstract: The temperature control system is provided with a lower heat removing unit which is disposed at the bottom of a reactor inside which an exothermic reaction takes place and through which a liquid coolant is flowed, and an upper heat removing unit which is disposed in the reactor further above from the lower heat removing unit and through which the liquid coolant is flowed, recovering reaction heat inside the reactor and controlling a temperature inside the reactor. The lower heat removing unit is supplied with the liquid coolant which is adjusted for temperature by a first temperature adjustment unit, and the upper heat removing unit is supplied with the liquid coolant which is adjusted for temperature by a second temperature adjustment unit different from the first temperature adjustment unit.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: September 13, 2016
    Assignees: Japan Oil, Gas and Metals National Corporation, INPEX CORPORATION, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventor: Shinya Arai
  • Patent number: 9434657
    Abstract: The hydrocarbon synthesis reaction apparatus is provided with a synthesis gas supply line in which a synthesis gas is compressed and supplied by a first compressor, a reactor configured to accommodate a catalyst slurry, a gas-liquid separator configured to separate an unreacted synthesis gas and hydrocarbons discharged from the reactor into a gas and a liquid, a first recycle line in which the unreacted synthesis gas after separation into a gas and a liquid is compressed and recycled into the reactor by a second compressor, and a second recycle line configured to recycle a residual unreacted synthesis gas after separation into a gas and a liquid into the inlet side of the first compressor at the time of start-up operation when the synthesis gas is gradually increased in the amount to be introduced.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: September 6, 2016
    Assignees: Japan Oil, Gas and Metals National Corporation, INPEX CORPORATION, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd, COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD
    Inventors: Yasuhiro Onishi, Kazuhiko Tasaka, Tomoyuki Mikuriya
  • Patent number: 9421509
    Abstract: The hydrocarbon production apparatus is provided with a gas-liquid separator for cooling gaseous state hydrocarbons drawn out from a gas phase portion of a reactor for the Fischer-Tropsch synthesis reaction and liquefying a portion of the hydrocarbons. A light liquid hydrocarbon supply line for supplying light hydrocarbons is disposed between a downstream side line which is downstream from the last stage of a gas-liquid separating unit of the gas-liquid separator, and an upstream side line which is upstream from the last stage of the gas-liquid separating unit of the gas-liquid separator, wherein the downstream side line is a liquid hydrocarbon line on the downstream side through which the light hydrocarbons having cloud points lower than the temperature at an outlet of a cooler in the last stage of the gas-liquid separating unit are flowed.
    Type: Grant
    Filed: March 13, 2012
    Date of Patent: August 23, 2016
    Assignees: Japan Oil, Gas and Metals National Corporation, INPEX CORPORATION, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventor: Shinya Arai
  • Patent number: 9417008
    Abstract: A production method for natural gas according to the invention includes a step of adiabatically compressing a raw natural gas containing helium gas, a step of separating the helium gas from the raw natural gas by passing the adiabatically-compressed raw natural gas through a separation membrane unit, a step of conveying the raw natural gas from which the helium gas has been separated to a terminal through a pipe line, and a step of pressing the helium gas separated from the raw natural gas into an underground storage formation.
    Type: Grant
    Filed: May 16, 2013
    Date of Patent: August 16, 2016
    Assignee: Japan Petroleum Exploration Co., Ltd.
    Inventors: Tomonori Ikeno, Kazumoto Chiba, Toshiya Wakatsuki, Yusuke Takeuchi, Kazutoshi Chaki, Junichiro Ando
  • Patent number: 9404050
    Abstract: A startup method for a fractionator that is supplied with, and fractionally distills, a hydrocracked product obtained in a wax fraction hydrocracking step by hydrocracking a wax fraction contained within a Fischer-Tropsch synthetic oil, the method including a preheating step of preheating the fractionator using a hydrocarbon oil that includes at least a portion of the hydrocracked product and is liquid at a normal temperature and normal pressure.
    Type: Grant
    Filed: March 15, 2011
    Date of Patent: August 2, 2016
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL ENGINEERING CO., LTD.
    Inventor: Kazuhiko Tasaka
  • Patent number: 9404047
    Abstract: A start-up method for a hydrocarbon synthesis reaction apparatus, comprising: an initial slurry-loading step in which the slurry is loaded into the reactor at the initial stage of the Fischer-Tropsch synthesis reaction at a lower loading rate than that applied to the reactor in a steady-state operation; and a CO conversion ratio-increasing step in which the liquid level of the slurry in the reactor is raised by adding to the slurry the hydrocarbons synthesized at the early stage of the Fischer-Tropsch synthesis reaction so that the CO conversion ratio is increased in proportion to a rise in the liquid level of the slurry in the reactor.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: August 2, 2016
    Assignees: Japan Oil, Gas and Metals National Corporation, INPEX CORPORATION, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Takeo Ito, Atsushi Murata, Eiichi Yamada, Yuzuru Kato, Yasuhiro Onishi
  • Patent number: 9376352
    Abstract: A start-up method of a bubble column slurry bed reactor for producing hydrocarbons includes: a first step that fills into a reactor a slurry in which a Fischer-Tropsch synthesis reaction catalyst particles are suspended in a slurry preparation oil with a 5% distillation point of 120 to 270° C., a 95% distillation point of 330 to 650° C., and a sulfur component and an aromatic component of 1 mass ppm or less, and a second step that, in a state where synthesis gas that is primarily hydrogen and carbon monoxide is introduced into the slurry filled into the reactor, raises the temperature of the reactor and starts the Fischer-Tropsch synthesis reaction. As the slurry preparation oil, one containing predetermined components in preset amounts is used. In the first step, the slurry is filled into the reactor in an amount in which airborne droplets do not flow out.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: June 28, 2016
    Assignees: Japan Oil, Gas and Metals National Corporation, INPEX CORPORATION, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventor: Kazuhiko Tasaka
  • Patent number: 9266099
    Abstract: The regenerated hydrocracking catalyst according to the present invention is a regenerated hydrocracking catalyst prepared by regenerating a used hydrocracking catalyst including: a catalyst support containing zeolite and an amorphous composite metal oxide having solid acidity; and at least one active metal supported by the catalyst support, selected from noble metals of Group 8 to Group 10 in the periodic table, wherein the regenerated hydrocracking catalyst contains 0.05 to 1% by mass of a carbonaceous substance in terms of carbon atoms based on the entire mass of the catalyst.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: February 23, 2016
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Yuichi Tanaka, Takuya Niitsuma, Kazuhiko Tasaka, Marie Iwama
  • Patent number: 9248387
    Abstract: A filter cleaning apparatus used in a reaction system including; a reaction tank having a filter, first feed line connected to the filter at one end, a recovery tank connected to the other end of the first feed line, and second feed line connected to the recovery tank at one end, is provided. The filter cleaning apparatus includes; first return line connected the second feed line at one end, first and second reverse cleaning solution tanks connected to the first return line, a first flow rate adjusting valve that can adjust filtered fluid to be supplied to the first reverse cleaning solution tank, a second flow rate adjusting valve that can adjust filtered fluid to be supplied to the second reverse cleaning solution tank, and a switching section that carries either one of the filtered fluids accommodated in these reverse cleaning solution tanks by switching.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: February 2, 2016
    Assignees: Japan Oil, Gas and Metals National Corporation, INPEX CORPORATION, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Atsushi Murata, Eiichi Yamada, Shinji Fukumoto
  • Patent number: 9200210
    Abstract: The method for stopping operation of a reactor is provided with a stop step of stopping supply of a synthesis gas containing a carbon monoxide gas and a hydrogen gas into the reactor; a slurry discharge step of discharging slurry from the reactor; a steam supply step of supplying steam higher in temperature than the decomposition temperatures of metal carbonyls into the reactor, thereby discharging gaseous matters inside the reactor; and a carbon monoxide gas detecting step of detecting an amount of carbon monoxide gas contained in the gaseous matters discharged from the reactor. In the steam supply step, supply of the steam is stopped when an amount of the detected carbon monoxide gas continuously declines to be lower than a predetermined reference value.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: December 1, 2015
    Assignees: Japan Oil, Gas and Metals National Corporation, INPEX CORPORATION, JX Nippon Oil & Energy Corporation, Japan Petroleum Exploration Co., Ltd., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventor: Shinya Arai
  • Patent number: 9193917
    Abstract: A method for estimating a particulate content in a slurry of the present invention is a method for estimating a content of particulates having a predetermined particle size or less in a slurry with solid particles dispersed in hydrocarbons including a wax, the method including, based on a correlation between a visible light transmittance and a content of solid particles having the predetermined particle size or less at a temperature at which hydrocarbons including a wax are liquefied when the solid particles having the predetermined particle size or less are dispersed in the hydrocarbons, estimating a content of particulates having the predetermined particle size or less in the slurry from a visible light transmittance of a supernatant part when the slurry is left to stand at the temperature.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: November 24, 2015
    Assignees: JAPAN OIL. GAS AND METALS NATIONAL CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, COSMO OIL CO., LTD., INPEX CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventor: Kazuaki Hayasaka
  • Patent number: 9186658
    Abstract: The hydrocracking catalyst of the present invention is a hydrocracking catalyst comprising a catalyst support comprising a zeolite and an amorphous composite metal oxide having solid acidity, and at least one active metal supported by the catalyst support and selected from noble metals of Group 8 to Group 10 in the periodic table, wherein the hydrocracking catalyst contains a carbonaceous substance comprising a carbon atom, and the content of the carbonaceous substance in the hydrocracking catalyst is 0.05 to 1% by mass in terms of the carbon atom.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: November 17, 2015
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventors: Yuichi Tanaka, Takuya Niitsuma, Kazuhiko Tasaka, Marie Iwama
  • Patent number: 9181492
    Abstract: The present invention provides a process for producing a hydrocarbon oil by performing a Fischer-Tropsch synthesis reaction using a reactor for a Fischer-Tropsch synthesis including a reaction apparatus having a slurry containing catalyst particles and a gaseous phase located above the slurry to obtain a hydrocarbon oil, wherein the Fischer-Tropsch reaction is performed while controlling a temperature of the slurry so that a difference T2?T1 between the average temperature T1 of the slurry and a temperature T2 at the liquid level of the slurry in contact with the gaseous phase is 5 to 30° C.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: November 10, 2015
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventor: Yuichi Tanaka
  • Patent number: 9162170
    Abstract: A synthesis reaction system is provided with: a reactor which synthesizes a hydrocarbon compound by a chemical reaction of a synthesis gas including hydrogen and carbon monoxide as main components, and a slurry having solid catalyst particles suspended in liquid; a separator which separates the hydrocarbon compound from the slurry; and a filtering device which filters the hydrocarbon compound extracted from the separator to trap powdered catalyst particles.
    Type: Grant
    Filed: March 12, 2009
    Date of Patent: October 20, 2015
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL ENGINEERING CO., LTD.
    Inventors: Yasuhiro Onishi, Yuzuru Kato, Atsushi Murata, Eiichi Yamada
  • Patent number: 9139779
    Abstract: A catalyst separation system which separates catalyst particles from liquid hydrocarbons synthesized by a chemical reaction of a synthesis gas including a hydrogen and a carbon monoxide as the main components, and a slurry having solid catalyst particles suspended in a liquid, the catalyst separation system is provided with: a reactor; a storage tank which stores the slurry drawn from the reactor; a plurality of filters which filters the slurry; and a filtrate recovery vessel which recovers a filtrate which has passed through the plurality of filters, wherein the plurality of filters is disposed in series in a flow line for the slurry from the storage tank to the filtrate recovery vessel.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: September 22, 2015
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL ENGINEERING CO., LTD.
    Inventors: Yasuhiro Onishi, Yuzuru Kato, Eiichi Yamada, Kentarou Morita
  • Patent number: 9120981
    Abstract: A hydrocarbon synthesis reaction apparatus synthesizes hydrocarbons by a Fischer-Tropsch synthesis reaction. The apparatus includes a reactor; a flowing line; a first cooling unit; a second cooling unit; a first separating unit which separates the liquid hydrocarbons condensed by the first cooling unit from the gaseous hydrocarbons; and a second separating unit which separates the liquid hydrocarbons condensed by the second cooling unit from the gaseous hydrocarbons. The first cooling unit cools the hydrocarbons which flow through the flowing line to a temperature range equal to or lower than a condensing point at which a wax fraction condenses, and higher than a freezing point at which the wax fraction solidifies. The second cooling unit cools the hydrocarbons which flow through the flowing line to a temperature range lower than the temperature to which the gaseous hydrocarbons are cooled by the first cooling unit, and higher than a freezing point at which a middle distillate solidifies.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: September 1, 2015
    Assignees: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL ENGINEERING CO., LTD.
    Inventor: Yasuhiro Onishi
  • Publication number: 20150166900
    Abstract: The present invention provides a process for producing a hydrocarbon oil by performing a Fischer-Tropsch synthesis reaction using a reactor for a Fischer-Tropsch synthesis including a reaction apparatus having a slurry containing catalyst particles and a gaseous phase located above the slurry to obtain a hydrocarbon oil, wherein the Fischer-Tropsch reaction is performed while controlling a temperature of the slurry so that a difference T2?T1 between the average temperature T1 of the slurry and a temperature T2 at the liquid level of the slurry in contact with the gaseous phase is 5 to 30° C.
    Type: Application
    Filed: February 23, 2015
    Publication date: June 18, 2015
    Applicants: JAPAN OIL, GAS AND METALS NATIONAL CORPORATION, INPEX CORPORATION, JX NIPPON OIL & ENERGY CORPORATION, JAPAN PETROLEUM EXPLORATION CO., LTD., COSMO OIL CO., LTD., NIPPON STEEL & SUMIKIN ENGINEERING CO., LTD.
    Inventor: Yuichi TANAKA