Patents Assigned to Lyten, Inc.
  • Patent number: 11870063
    Abstract: A dual-layer gradient electrode structure is provided for reducing sulfide transfer. In use, an electrode of a lithium-based battery may comprise a first layer disposed above an electrically conductive substrate, the first layer including a first plurality of carbon aggregates having a first porosity. Additionally, the electrode may comprise a second layer disposed above the first layer, the second layer including a second plurality of carbon aggregates, the second layer including a second porosity which is greater than the first porosity, where a first group of particles of the second layer has a first concentration of interacting functional groups, and a second group of particles of the second layer has a second concentration of the interacting functional groups, the second concentration being greater than the first concentration.
    Type: Grant
    Filed: October 24, 2022
    Date of Patent: January 9, 2024
    Assignee: Lyten, Inc.
    Inventors: Kevin Rhodes, Arjun Mendiratta
  • Publication number: 20240003779
    Abstract: Resonant sensors for environmental health risk detection are disclosed. An adhesive may include at least one meso-scale or micro-scale resonator embedded within a material that comprises at least a portion of the adhesive. The at least one meso-scale or micro-scale resonator may be formed from a composite material. Additionally, the at least one meso-scale or micro-scale resonator may include a plurality of first carbon particles configured to uniquely resonate in response to an electromagnetic ping based at least in part on a concentration level of the first carbon particles within the at least one meso-scale or micro-scale resonator.
    Type: Application
    Filed: September 18, 2023
    Publication date: January 4, 2024
    Applicant: Lyten, Inc.
    Inventors: Michael Stowell, Jacques Nicole, Carlos Montalvo, Daniel Cook
  • Publication number: 20240002995
    Abstract: Inventive techniques for forming unique compositions of matter are disclosed, as well as various advantageous physical characteristics, and associated properties of the resultant materials. In particular, particles comprising polymer matrices are characterized by having carbon disposed within the polymer matrix structure thereof. The carbon is primarily, or entirely, present at interstitial sites of the polymer matrix, and may be present in amounts ranging from about 15 wt % to about 90 wt %. The carbon, moreover, forms covalent bonds with both atoms of the polymer matrix and other carbon atoms present in, but not part of, the matrix. This facilitates substantially homogeneous dispersal of the carbon throughout the resultant material, conveying unique and advantageous properties such as strength-to-weight ratio, density, mechanical toughness, sheer strength, flex strength, hardness, anti-corrosiveness, electrical and/or thermal conductivity, etc. as described herein.
    Type: Application
    Filed: September 13, 2023
    Publication date: January 4, 2024
    Applicant: Lyten, Inc.
    Inventors: Bryce H. Anzelmo, Michael Stowell, Daniel Jacobson, Lauren Sienko, Bruce Lanning
  • Publication number: 20230417685
    Abstract: A disclosed leaky coaxial resonant sensor system and methods. In use, the system includes at least one split-ring resonator (SRR) embedded within a material of the component. The at least one SRR is formed from a composite material. Additionally, the at least one SRR is configured to resonate at a first frequency in response to an interrogation signal from a leaky coaxial cable antenna. In some aspects, each SRR may resonate at a first frequency in response to an electromagnetic ping when the composite material is in a first state, and may resonate at a second frequency in response to the electromagnetic ping when the composite material is in a second state. A resonant frequency of the composite material may be based on physical characteristics of the composite material.
    Type: Application
    Filed: August 3, 2023
    Publication date: December 28, 2023
    Applicant: Lyten, Inc.
    Inventors: Daniel Jardine, Michael Stowell, Daniel Cook, Carlos Montalvo
  • Publication number: 20230416875
    Abstract: Techniques for refining valuable materials from aqueous sources, along with corresponding apparatuses, are disclosed. The disclosed techniques enable “green” and “conflict-free” acquisition of critical minerals. These advantages are impactful in applications including refinement of rare materials such as certain metals, especially metals necessary for production of energy storage devices required to advance environmental goals, such as in the Paris climate agreement. The inventive concepts include economically viable approaches to refinement, as well as economically viable apparatuses. In some approaches, valuable materials such as metals are refined from salts obtained from aqueous sources. Power required to refine materials is provided by renewable energy sources. Real world implementations involve co-locating a dissociative reactor with a geothermal energy plant near an aquifer with salt(s) therein. Refined minerals are produced on site.
    Type: Application
    Filed: September 7, 2023
    Publication date: December 28, 2023
    Applicant: Lyten, Inc.
    Inventors: Michael Stowell, Bruce Gittleman
  • Publication number: 20230409847
    Abstract: A container includes a surface defining a volume of the container, a first resonance portion disposed on a first portion of the surface of the container using one or more first carbon-based inks, and a second resonance portion disposed on a second portion of the surface of the container using one or more second carbon-based inks different than the one or more first carbon-based inks. The first resonance portion can resonate within a first range of frequencies in response to one or more electromagnetic pings received from a user device, and the second resonance portion can resonate within a second range of frequencies in response to the one or more electromagnetic pings, the second range of frequencies being different than the first range of frequencies. In some instances, the user device may be a smartphone, a radio frequency identification (RFID) reader, or a near-field communication (NFC) device.
    Type: Application
    Filed: August 30, 2023
    Publication date: December 21, 2023
    Applicant: Lyten, Inc.
    Inventors: Michael W. Stowell, Bruce Lanning
  • Publication number: 20230384264
    Abstract: A disclosed water droplet sensing system and methods using split-ring resonators, which may be embedded within a material. In use, a component includes at least one split-ring resonator (SRR) which may be embedded within a material of the component. The at least one SRR may be formed from a composite material. Additionally, the at least one SRR may be configured to form a signal that is correlated with a concentration of water proximate to the at least one SRR. In some aspects, each SRR may resonate at a first frequency in response to an electromagnetic ping when the material is in a first state, and may resonate at a second frequency in response to the electromagnetic ping when the material is in a second state. A resonant frequency of the material may be based on physical characteristics of the material (including fluid accumulation on the material).
    Type: Application
    Filed: August 3, 2023
    Publication date: November 30, 2023
    Applicant: Lyten, Inc.
    Inventors: Daniel Jardine, Michael Stowell, Daniel Cook, Carlos Montalvo
  • Patent number: 11827991
    Abstract: The presently disclosed concepts relate to ultra-efficient EV battery recycling systems. Alkali metal extraction (and in particular lithium extraction) is accomplished using a solid electrolyte membrane. By using a solid electrolyte embedded in a matrix, alkali metals, in particular lithium can be (energy-wise) efficiently separated from feed solutions. The energy used to initially extract lithium from a feed solution is stored as electrochemical energy, which electrochemical energy is reclaimed in subsequent extraction processing steps. This energy storage and energy reclamation is performed in continuous ultra-efficient ongoing cycles. Since irrecoverable energy losses incurred in each cycle are limited to negligible amounts of joule heating of the system components and feed solution, the system can be sustainably powered using locally-generated renewable energy.
    Type: Grant
    Filed: September 19, 2022
    Date of Patent: November 28, 2023
    Assignee: LYTEN, INC.
    Inventors: Jesse Baucom, Sanjeev Kolli
  • Patent number: 11826718
    Abstract: Systems and methods for eliminating carbon dioxide and capturing solid carbon are disclosed. By eliminating carbon dioxide gas, e.g., from an effluent exhaust stream of a fossil fuel fired electric power production facility, the inventive concepts presented herein represent an environmentally-clean solution that permanently eliminates greenhouse gases while at the same time producing captured solid carbon products that are useful in various applications including advanced composite material synthesis (e.g., carbon fiber, 3D graphene) and energy storage (e.g., battery technology). Capture of solid carbon during the disclosed process for eliminating greenhouse gasses avoids the inefficiencies and risks associated with conventional carbon dioxide sequestration.
    Type: Grant
    Filed: August 16, 2022
    Date of Patent: November 28, 2023
    Assignee: Lyten, Inc.
    Inventors: Michael W. Stowell, Lauren Sienko
  • Patent number: 11827987
    Abstract: Inventive techniques for forming unique compositions of matter are disclosed, as well as various advantageous physical characteristics, and associated properties of the resultant materials. In particular, metal(s) (including various alloys, such as Inconel superalloys) are characterized by having carbon disposed within the metal lattice structure thereof. The carbon is primarily, or entirely, present at interstitial sites of the metal lattice, and may be present in amounts ranging from about 15 wt % to about 90 wt %. The carbon, moreover, forms non-polar covalent bonds with both metal atoms of the lattice and other carbon atoms present in the lattice. This facilitates substantially homogeneous dispersal of the carbon throughout the resultant material, conveying unique and advantageous properties such as strength-to-weight ratio, density, mechanical toughness, sheer strength, flex strength, hardness, anti-corrosiveness, electrical and/or thermal conductivity, etc. as described herein.
    Type: Grant
    Filed: September 30, 2022
    Date of Patent: November 28, 2023
    Assignee: Lyten, Inc.
    Inventors: Michael Stowell, Lauren Sienko, Daniel Jacobson, Bruce Lanning
  • Patent number: 11813774
    Abstract: A method for continuously producing a composite material is disclosed. In some implementations, the method includes supplying a thermoplastic resin having an initial density, mixing polypropylene-graft-maleic anhydride (PPgMA) formed of a plurality of interconnected PPgMA molecules throughout the thermoplastic resin, distributing a plurality of carbon particles throughout the thermoplastic resin and the plurality of interconnected PPgMA molecules, and forming, by rotational molding, the composite material based on a combination of the thermoplastic resin, the PPgMA, and at least some of the plurality of carbon particles.
    Type: Grant
    Filed: March 30, 2022
    Date of Patent: November 14, 2023
    Assignee: Lyten, Inc.
    Inventors: John Baldwin, Salik Khan, Bryce H. Anzelmo, Minedys Macias, Chandra B. KC
  • Publication number: 20230356167
    Abstract: A system for post-processing carbon powders includes a fluidized-bed reactor having an interior containing a fluidized-bed region. The system may include a gas feed source, a gas inlet value, a gas-solid separator, and an energy source coupled to the fluidized-bed reactor. Carbon nano-particulates may be loaded, in powder form, into the fluidized-bed region prior to operation. The gas feed source may output a gas-phase mixture into the interior of the fluidized-bed reactor, and the energy source may electromagnetically excite the gas-phase mixture and generate a plasma-phase mixture formed in a plasma region positioned adjacent to or within the interior of the fluidized-bed reactor. The energy source may be positioned at one or more positions relative to the gas inlet valve.
    Type: Application
    Filed: July 27, 2022
    Publication date: November 9, 2023
    Applicant: Lyten, Inc.
    Inventors: Jacques F. Nicole, Pawel A. Piotrowicz, Michael W. Stowell
  • Publication number: 20230338916
    Abstract: Systems and methods for eliminating carbon dioxide and capturing solid carbon are disclosed. By eliminating carbon dioxide gas, e.g., from an effluent exhaust stream of a fossil fuel fired electric power production facility, the inventive concepts presented herein represent an environmentally-clean solution that permanently eliminates greenhouse gases while at the same time producing captured solid carbon products that are useful in various applications including advanced composite material synthesis (e.g., carbon fiber, 3D graphene) and energy storage (e.g., battery technology). Capture of solid carbon during the disclosed process for eliminating greenhouse gasses avoids the inefficiencies and risks associated with conventional carbon dioxide sequestration.
    Type: Application
    Filed: June 27, 2023
    Publication date: October 26, 2023
    Applicant: Lyten, Inc.
    Inventors: Michael W. Stowell, Lauren Sienko
  • Publication number: 20230332958
    Abstract: Tires formed of one or more tire plies are disclosed. In some implementations, tire plies may include a temperature sensor that may detect a temperature of a respective tire ply. The temperature sensor may include one or more split-ring resonators (SRRs), each having a resonance frequency that changes in response to one or more of a change in an elastomeric property or a change in the temperature of a respective one or more tire plies. In some aspects, the temperature sensor may include an electrically-conductive layer dielectrically separated from a respective one or more SRRs.
    Type: Application
    Filed: June 16, 2023
    Publication date: October 19, 2023
    Applicant: Lyten, Inc.
    Inventors: Michael W. STOWELL, Carlos MONTALVO
  • Publication number: 20230327223
    Abstract: A battery safety system includes a flow valve and a sensing device. The flow valve is disposed on a housing of the battery and includes a first valve that is embedded inside the housing and a second valve that intersects the housing. The first valve includes a cavity through which analytes released upon electrochemical reactions within the battery flow towards the second valve. The second valve extends through the housing to the outside, and defines an opening through which the released analytes exit the housing. The sensing device is disposed within the cavity of the first valve of the valve and is situated in a manner to be in fluidic contact with the released analytes as they flow from the inside of the battery to the outside. In some aspects, the battery safety system can detect a minute presence of one or more analytes. In some aspects, the sensor is in communication with a battery management system.
    Type: Application
    Filed: June 13, 2023
    Publication date: October 12, 2023
    Applicant: Lyten, Inc.
    Inventors: George Clayton Gibbs, Sung H. Lim, Chiapu Chang, Parth K. Patel, Beomseok Kim
  • Publication number: 20230327135
    Abstract: A battery may include an anode, a cathode positioned opposite to the anode, a separator positioned between the anode and the cathode, an electrolyte dispersed throughout the cathode and in contact with the anode, and a dual-pore system. The anode may be configured to release a plurality of lithium ions. The cathode may include a plurality of pathways defined by a plurality of porous non-hollow carbonaceous spherical particles and may include a plurality of carbonaceous structures each based on a coalescence of a group of the porous non-hollow carbonaceous spherical particles. The dual-pore system may be disposed in the cathode and defined in shape and orientation by the plurality of carbonaceous structures. In some aspects, the dual-pore system may be configured to receive gaseous oxygen from the ambient atmosphere.
    Type: Application
    Filed: May 31, 2023
    Publication date: October 12, 2023
    Applicant: Lyten, Inc.
    Inventors: Karel Vanheusden, Ratnakumar Bugga, Daniel Cook
  • Patent number: 11783141
    Abstract: A container includes a surface and a first resonance portion. The surface defines a volume of the container, and the first resonance portion includes an assembly of three-dimensional (3D) carbon-containing structures printed on the surface of the container using one or more first carbon-based inks. The first resonance portion is configured to indicate a presence of an item within the container by resonating at one or more predetermined frequencies in response to an electromagnetic radiation ping associated with a user device located a distance from the container. In some implementations, the container may include a second resonance portion including an assembly of 3D carbon-containing structures printed on the surface of the container using one or more second carbon-based inks, the one or more second carbon-based inks being different than the one or more first carbon-based inks.
    Type: Grant
    Filed: December 1, 2022
    Date of Patent: October 10, 2023
    Assignee: Lyten, Inc.
    Inventors: Michael W. Stowell, Bruce Lanning
  • Patent number: 11779886
    Abstract: The presently disclosed concepts relate to improved techniques for alkali metal extraction (and in particular lithium), using a solid electrolyte membrane. By using a solid electrolyte embedded in a matrix, alkali metal (such as lithium) can be more effectively separated from feed solutions. Additionally, energy used to initially extract lithium from a feed solution may be stored as electrochemical energy, which in turn, may be discharged when lithium is depleted from the electrode. This discharged energy may therefore be reclaimed and reused to extract additional lithium.
    Type: Grant
    Filed: September 19, 2022
    Date of Patent: October 10, 2023
    Assignee: LYTEN, INC.
    Inventors: Jesse Baucom, Sanjeev Kolli
  • Patent number: 11783142
    Abstract: A container includes a surface defining a volume of the container, a first resonance portion disposed on a first portion of the surface of the container using one or more first carbon-based inks, and a second resonance portion disposed on a second portion of the surface of the container using one or more second carbon-based inks different than the one or more first carbon-based inks. The first resonance portion can resonate within a first range of frequencies in response to one or more electromagnetic pings received from a user device, and the second resonance portion can resonate within a second range of frequencies in response to the one or more electromagnetic pings, the second range of frequencies being different than the first range of frequencies. In some instances, the user device may be a smartphone, a radio frequency identification (RFID) reader, or a near-field communication (NFC) device.
    Type: Grant
    Filed: April 5, 2023
    Date of Patent: October 10, 2023
    Assignee: Lyten, Inc.
    Inventors: Michael W. Stowell, Bruce Lanning
  • Patent number: 11783143
    Abstract: A wireless device can transmit, over a communications network to a server, a request to download an application associated with obtaining information pertaining to a package. The wireless device can receive the requested application from the server, and can execute the application using the one or more processors. The wireless device can transmit one or more electromagnetic pings in a vicinity of the package, receive a first return signal from the first resonance portion, and receive a second return signal from the second resonance portion. The first return signal has a frequency based on the one or more electromagnetic pings and a first resonant frequency of the first resonance portion, and the second return signal has a frequency based on the one or more electromagnetic pings and a second resonant frequency of the second resonance portion.
    Type: Grant
    Filed: April 5, 2023
    Date of Patent: October 10, 2023
    Assignee: Lyten, Inc.
    Inventors: Michael W. Stowell, Bruce Lanning