Patents Assigned to Old Dominion University Research Foundation
  • Publication number: 20140302569
    Abstract: Use of an algal for biodiesel fuel selected for growing strain of production, the genus Desmodesmus wherein said strain was under high nutrient conditions and is characterized as having a determined fatty by acid nuclear methyl ester content of 2.6% magnetic resonance analysis, nitrogen content of 11.3% and a carbon content of 46.3%. Given the growth and elemental composition of this strain t the instant algal strain is of particular use as a biomass source for biofuel lipids and/or biodiesel fuel production.
    Type: Application
    Filed: July 24, 2012
    Publication date: October 9, 2014
    Applicant: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
    Inventors: Andrew S. Gordon, Patrick G. Hatcher
  • Publication number: 20140296354
    Abstract: Described herein are the one-pot synthesis and characterization of a library of low molecular weight peptoid compounds that are able to form gels at room temperature. The compounds are synthesized from biologically-based starting materials, are biocompatible, and are resistant to degradation by proteases and peptidases.
    Type: Application
    Filed: April 1, 2014
    Publication date: October 2, 2014
    Applicant: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
    Inventors: Guijun WANG, Hari P. R. MANGUNURU
  • Publication number: 20140223981
    Abstract: Described herein are fertilizers for enhancing the carbon sequestration properties of soil. The fertilizers described herein include algae comprising algaenan. In one aspect, the fertilizer includes (a) one or more organic nitrogen sources, (b) one or more synthetic nitrogen sources, and (c) algae comprising algaenan. The fertilizers and fertilizer compositions release nitrogen at a predictable rate over time, which can enhance growth of plants that are fertile with the composition described herein.
    Type: Application
    Filed: February 14, 2014
    Publication date: August 14, 2014
    Applicants: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
    Inventors: Patrick G. Hatcher, John Joseph Moriarty
  • Publication number: 20140222126
    Abstract: A system for treatment of biological tissues is provided. The system includes a lens having a hollow, substantially hemispherical shape with an outer surface and an inner surface, the inner surface defining a substantially hemispherical cavity for inserting the biological tissues. The system further includes an antenna assembly for generating and directing electromagnetic radiation towards the outer surface. In the system, the lens is configured to direct the electromagnetic energy to an area in the cavity, a dielectric constant of the lens at the inner surface substantially matches a dielectric constant of the biological tissues, the dielectric constant monotonically increases from the outer surface to the inner surface, and the electromagnetic energy is generated via a series of pulses having a transient of less than about 1 nanosecond.
    Type: Application
    Filed: February 3, 2014
    Publication date: August 7, 2014
    Applicant: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
    Inventors: Shu Xiao, Andrei Pakhomov, Karl H. Schoenbach
  • Patent number: 8798705
    Abstract: An instrument 10 for delivering a high voltage pulse to tissue is disclosed. The instrument 10 can include an outer support member 12 with a liquid reservoir 14 that has a liquid-contacting interior surface 16, an opening 18 at a distal end 20 of the outer support member 12, and a ground electrode 22 extending in a longitudinal direction and having a lower surface 23 proximate the opening 18. The instrument 10 can also include a working electrode 26 extending longitudinally from the liquid-contacting interior surface 16 with a needle-shaped distal portion 28 proximate the distal end 20; and an inlet port 31 and an outlet port 34 in liquid communication with the liquid reservoir 14. The working electrode 26 can be electrically isolated from the ground electrode 22 by an insulating portion 30 of the outer support member 12, and a direct path can exist through the liquid reservoir 14 between the ground electrode 22 and the working electrode 26.
    Type: Grant
    Filed: April 14, 2010
    Date of Patent: August 5, 2014
    Assignee: Old Dominion University Research Foundation
    Inventors: Juergen F. Kolb, Karl H. Schoenbach, Stephen P. Beebe
  • Publication number: 20140199384
    Abstract: Described is a direct method for the fabrication of resorcinarene nanocapsules by photopolymerization of compounds of formula (I), such as resorcinarene tetraalkene tetrathiol (RTATT), in the absence of any template or preorganization. Further, by varying the polymerization media, a variety of other polymeric architectures like lattices, fibrous networks, and nanoparticles were obtained. The morphology and structure were characterized by transmission electron microscopy, energy dispersive spectroscopy, scanning electron microscopy, dynamic light scattering, infrared and nuclear magnetic resonance spectroscopy. These morphologically distinct resorcinarene polymeric architectures contain residual thiol and ene functional groups offering potential functionalization opportunities.
    Type: Application
    Filed: January 23, 2014
    Publication date: July 17, 2014
    Applicant: Old Dominion University Research Foundation
    Inventors: Ramjee Balasubramanian, Zaharoula M. Kalaitzis, Srujana Prayakarao
  • Patent number: 8778035
    Abstract: Disclosed herein is the production of hydrocarbon based fuel from micro-organisms and algae that comprise algaenan without requiring prior removal of water, as well as the production of hydrocarbon based fuel directly from the algaenan itself. Also disclosed herein are feed material for the processes disclosed herein comprising modified algae and algaenan that selectively produce hydrocarbon of desired chain lengths, along with the process of modifying the algae and algaenan. Also disclosed herein is the production of both hydrocarbon and organic fertilizer from algae without the need to remove the water from the algae prior to processing.
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: July 15, 2014
    Assignee: Old Dominion University Research Foundation
    Inventors: Patrick G. Hatcher, Elodie Salmon
  • Patent number: 8772004
    Abstract: A method and device for aggregating algae in an aqueous solution is disclosed. The method can include providing an algae feed comprising a liquid and algae dispersed therein. The algae feed can be aggregated by applying a nanosecond pulsed electric field to the algae feed. The nanosecond pulsed electric field can include a plurality of electric pulses having a pulse duration ranging from 1 to 1,000 nanoseconds. The method can also include separating an aggregated algae stream from the algae feed and feeding the aggregated algae stream to a lipid extraction operation.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: July 8, 2014
    Assignee: Old Dominion University Research Foundation
    Inventors: Gary C. Schafran, Juergen F. Kolb, Aron Stubbins, Karl H. Schoenbach
  • Patent number: 8697134
    Abstract: Described is a direct method for the fabrication of resorcinarene nanocapsules by photopolymerization of compounds of formula (I), such as resorcinarene tetraalkene tetrathiol (RTATT), in the absence of any template or preorganization. Further, by varying the polymerization media, a variety of other polymeric architectures like lattices, fibrous networks, and nanoparticles were obtained. The morphology and structure were characterized by transmission electron microscopy, energy dispersive spectroscopy, scanning electron microscopy, dynamic light scattering, infrared and nuclear magnetic resonance spectroscopy. These morphologically distinct resorcinarene polymeric architectures contain residual thiol and ene functional groups offering potential functionalization opportunities.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: April 15, 2014
    Assignee: Old Dominion University Research Foundation
    Inventors: Ramjee Balasubramanian, Zaharoula M. Kalaitzis, Srujana Prayakarao
  • Patent number: 8646918
    Abstract: A projection system having a set of projectors that cast images: (i) onto the concave surface of a hemispherical dome, as is usual in planetariums and (ii) onto the surface of a centrally located sphere. The images thus cast may be coordinated by a controlling computer program, so that changes in the content or orientation of the images on the sphere result in corresponding changes in the images on the dome and vice versa.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: February 11, 2014
    Assignee: Old Dominion University Research Foundation
    Inventor: Declan G. De Paor
  • Patent number: 8649631
    Abstract: Disclosed is a distortion invariant system, method and computer readable medium for detecting the presence of one or more predefined targets in an input image. The input image and a synthetic discriminant function (SDF) reference image are correlated in a shift phase-encoded fringe-adjusted joint transform correlation (SPFJTC) correlator yielding a correlation output. A peak-to-clutter ratio (PCR) is determined for the correlation output and compared to a threshold value. A predefined target is present in the input image when the PCR is greater than or equal to the threshold value.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: February 11, 2014
    Assignee: Old Dominion University Research Foundation
    Inventors: Mohammed Nazrul Islam, K. Vijayan Asari, Mohammad A. Karim
  • Publication number: 20130318947
    Abstract: Systems and methods for treatment of a heated exhaust gas including hydrocarbons are provided. A method includes providing a first gas including a gaseous mixture of vaporized diesel fuel and steam and treating the first gas using at least one corona discharge including a combination of streamers to transform the first gas into a second gas including volatile partially oxidized hydrocarbons (PO—HC) and hydrogen gas (H2), the combination of streamers including primarily surface streamers. The method also includes extracting at least a portion of vaporized diesel fuel and steam from the second gas to form a third gas and directing a combination of the third gas and the exhaust gas into a nitrogen oxides (NOx) reduction reactor.
    Type: Application
    Filed: August 6, 2013
    Publication date: December 5, 2013
    Applicant: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
    Inventors: Muhammad Arif MALIK, Karl H. SCHOENBACH, Richard HELLER
  • Patent number: 8586807
    Abstract: Disclosed herein is the use of terrestrial plant materials (e.g., leaves and bark) that contain biopolymer materials to produce hydrocarbon-rich crude oils that can be refined further into hydrocarbon-based biofuels, via the hydrous pyrolysis method, which involves heating to subcritical temperatures and pressures in an aqueous medium. One can also isolate the aliphatic biopolymers and utilize them as feedstocks for production of the hydrocarbon-rich crude via hydrous pyrolysis.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: November 19, 2013
    Assignee: Old Dominion University Research Foundation
    Inventor: Patrick G. Hatcher
  • Publication number: 20130284588
    Abstract: Systems and methods for the treatment of a gas are provided. A method includes providing multiple discharge chambers defined by dielectric sections, where each of the discharge chambers comprises sets of electrodes for producing electric fields in the discharge chambers, where the dielectric sections and the sets of electrodes are arranged to define a volume that inhibits the formation of volume-streamers and the discharge chambers are configured to either prevent pulsed electric fields generated in adjacent discharge chambers from substantially interacting or to allow interaction in constructive way. The method also includes directing the gas into the discharge chambers and treating the gas using a corona discharge in the discharge chambers produced by a pulsed electric field generated by each of the sets of the first and second electrodes in the discharge chambers, where the pulsed electric field is configured to produce the corona discharge to have surface-streamers and volume-streamers.
    Type: Application
    Filed: March 15, 2013
    Publication date: October 31, 2013
    Applicant: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
    Inventor: Old Dominion University Research Foundation
  • Publication number: 20130260435
    Abstract: Methods of enhancing membrane permeabilization in a cell are provided. A method includes disposing the cell between a first electrode and a second electrode and applying a plurality of electrical pulses between the first electrode and the second electrode. In the method, the plurality of electrical pulses include at least two trains of pulses separated by an interval greater than about 10 s. Further, the amplitude of the electrical pulses is selected to be greater than about 0.2 kV/cm.
    Type: Application
    Filed: December 13, 2011
    Publication date: October 3, 2013
    Applicant: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
    Inventors: Olga Pakhomova, Andrei G. Pakhomov
  • Patent number: 8518227
    Abstract: A nanoparticle translocation device includes a first reservoir having a first reservoir electrode, a second reservoir having a second reservoir electrode, and at least one nanopore providing fluid communication between the first and second reservoirs. The device also includes one or more inner electrode portions on an inner wall of the nanopore and one or more outer electrode portions disposed on an outer wall of the nanopore. The device further includes at least one DC voltage supply for selectively applying a DC voltage to each of the first reservoir electrode, the second reservoir electrode, and the outer electrode layer, where the inner electrode portions, the outer electrode portions, and the nanopore are in a substantially coaxial arrangement.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: August 27, 2013
    Assignee: Old Dominion University Research Foundation
    Inventors: Shizhi Qian, Ali Beskok
  • Patent number: 8502108
    Abstract: A microhollow cathode discharge assembly capable of generating a low temperature, atmospheric pressure plasma micro jet is disclosed. The microhollow assembly has two electrodes: an anode and a cathode separated by a dielectric. A microhollow gas passage is disposed through the three layers. In some embodiments, the passage is tapered such that the area at the first electrode is larger than the area at the second electrode. When a potential is placed across the electrodes and a gas is directed through the gas passage, then a low temperature micro plasma jet can be created at atmospheric pressure or above.
    Type: Grant
    Filed: July 8, 2009
    Date of Patent: August 6, 2013
    Assignee: Old Dominion University Research Foundation
    Inventors: Abdel-Aleam H Mohamed, Karl H. Schoenbach, Robert Chiavarini, Robert O. Price, Juergen Kolb
  • Publication number: 20130189345
    Abstract: A variety of article and systems including wound care systems, methods for making the wound care systems, bactericidal, and methods for treating wounds using these systems are disclosed. The wound care systems may include a first material comprising one or more fibers or porous media. The one or more fibers or porous media may be coated with a second material that is capable of inhibiting the growth of bacteria and killing the bacteria to render the wound care system sterile, increasing the absorbency of the first material, or both upon exposure to light. The first material may be cotton, or any suitable fibrous material, the second material may be TiO2, and the light may be UV or visible light. A variety of methods including ALD may be used to coat the first material.
    Type: Application
    Filed: January 9, 2013
    Publication date: July 25, 2013
    Applicant: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
    Inventor: Old Dominion University Research Foundation
  • Publication number: 20130172884
    Abstract: Systems and methods for treating or manipulating biological tissues are provided. In the systems and methods, a biological tissue is placed in contact with an array of electrodes. Electrical pulses are then applied between a bias voltage bus and a reference voltage bus of a distributor having switching elements associated with each of the electrodes. The switching elements provide a first contact position for coupling electrodes to bias voltage bus, a second contact position for coupling electrodes to the reference voltage bus, and a third contact position for isolating electrodes from the high and reference voltage buses. The switching elements are operated over various time intervals to provide the first contact position for first electrodes, a second contact position for second electrodes adjacent to the first electrodes, and a third contact position for a remainder of the electrodes adjacent to the first and second electrodes.
    Type: Application
    Filed: September 9, 2011
    Publication date: July 4, 2013
    Applicant: OLD DOMINION UNIVERSITY RESEARCH FOUNDATION
    Inventors: Karl Schoenbach, Richard Heller
  • Patent number: 8455699
    Abstract: Disclosed are processes for producing glycerol-related products. One process for producing glycerol-related products comprises introducing glycerol and an alkylation reagent to a substantially oxygen free environment. Another process for producing glycerol-related products comprises introducing a glycerol and tetramethylammonium hydroxide to a substantially oxygen free environment.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: June 4, 2013
    Assignee: Old Dominion University Research Foundation
    Inventors: Patrick G. Hatcher, Zhanfei Liu, Elodie Salmon