Patents Assigned to Philips Lumileds Lighting Company, LLC
  • Patent number: 8679869
    Abstract: An AlGaInP light emitting device is formed as a thin, flip chip device. The device includes a semiconductor structure comprising an AlGaInP light emitting layer disposed between an n-type region and a p-type region. N- and p-contacts electrically connected to the n- and p-type regions are both formed on the same side of the semiconductor structure. The semiconductor structure is connected to a mount via the contacts. A growth substrate is removed from the semiconductor structure and a thick transparent substrate is omitted, such that the total thickness of semiconductor layers in the device is less than 15 ?m some embodiments, less than 10 ?m in some embodiments. The top side of the semiconductor structure may be textured.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: March 25, 2014
    Assignee: Philips Lumileds Lighting Company, LLC
    Inventors: Rafael I. Aldaz, John E. Epler, Patrick N. Grillot, Michael R. Krames
  • Publication number: 20140034990
    Abstract: A device includes a semiconductor structure comprising a III-phosphide light emitting layer disposed between an n-type region and a p-type region. A transparent, conductive oxide is disposed in direct contact with the n-type region. In some embodiments, a total thickness of semiconductor material between the light emitting layer and the transparent, conductive oxide is less than one micron.
    Type: Application
    Filed: October 9, 2013
    Publication date: February 6, 2014
    Applicants: KONINKLIJKE PHILIPS N.V., PHILIPS LUMILEDS LIGHTING COMPANY, LLC, KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Frédéric Georges Michel, John Edward Epler
  • Patent number: 8628985
    Abstract: Light emitting devices with improved light extraction efficiency are provided. The light emitting devices have a stack of layers including semiconductor layers comprising an active region. The stack is bonded to a transparent lens having a refractive index for light emitted by the active region preferably greater than about 1.5, more preferably greater than about 1.8. A method of bonding a transparent lens to a light emitting device having a stack of layers including semiconductor layers comprising an active region includes elevating a temperature of the lens and the stack and applying a pressure to press the lens and the stack together. Bonding a high refractive index lens to a light emitting device improves the light extraction efficiency of the light emitting device by reducing loss due to total internal reflection. Advantageously, this improvement can be achieved without the use of an encapsulant.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: January 14, 2014
    Assignee: Philips Lumileds Lighting Company LLC
    Inventors: Michael D. Camras, Michael R. Krames, Wayne L. Snyder, Frank M. Steranka, Robert C. Taber, John J. Uebbing, Douglas W. Pocius, Troy A. Trottier, Christopher H. Lowery, Gerd O. Mueller, Regina B. Mueller-Mach
  • Patent number: 8581229
    Abstract: A device includes a semiconductor structure comprising a III-nitride light emitting layer disposed between an n-type region and a p-type region. A transparent, conductive non-III-nitride material is disposed in direct contact with the n-type region. A total thickness of semiconductor material between the light emitting layer and the transparent, conductive non-III-nitride material is less than one micron.
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: November 12, 2013
    Assignees: Koninklijke Philips N.V., Philips Lumileds Lighting Company, LLC
    Inventors: Frederic Dupont, John E. Epler
  • Patent number: 8486725
    Abstract: A light emitting device is produced by depositing a layer of wavelength converting material over the light emitting device, testing the device to determine the wavelength spectrum produced and correcting the wavelength converting member to produce the desired wavelength spectrum. The wavelength converting member may be corrected by reducing or increasing the amount of wavelength converting material. In one embodiment, the amount of wavelength converting material in the wavelength converting member is reduced, e.g., through laser ablation or etching, to produce the desired wavelength spectrum.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: July 16, 2013
    Assignee: Philips Lumileds Lighting Company, LLC
    Inventors: Steven Paolini, Michael D. Camras, Oscar A. Chao Pujol, Frank M. Steranka, John E. Epler
  • Patent number: 8471282
    Abstract: In embodiments of the invention, a passivation layer is disposed over a side of a semiconductor structure including a light emitting layer disposed between an n-type region and a p-type region. A material configured to adhere to an underfill is disposed over an etched surface of the semiconductor structure.
    Type: Grant
    Filed: June 7, 2010
    Date of Patent: June 25, 2013
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventors: Frederic S. Diana, Henry Kwong-Hin Choy, Qingwei Mo, Serge I. Rudaz, Frank L. Wei, Daniel A. Steigerwald
  • Patent number: 8450147
    Abstract: A process is described for wavelength conversion of LED light using phosphors. LED dies are tested for correlated color temperature (CCT), and binned according to their color emission. The LEDs in each_bin are mounted on a single submount to form an array of LEDs. Various thin sheets of a flexible encapsulant (e.g., silicone) infused with one or more phosphors are preformed, where each sheet has different color conversion properties. An appropriate sheet is placed over an array of LED mounted on a submount, and the LEDs are energized. The resulting light is measured for CCT. If the CCT is acceptable, the phosphor sheet is permanently laminated onto the LEDs and submount. By selecting a different phosphor sheet for each bin of LEDs, the resulting CCT is very uniform across all bins.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: May 28, 2013
    Assignee: Philips Lumileds Lighting Company LLC
    Inventor: Haryanto Chandra
  • Patent number: 8450760
    Abstract: One or more circuit elements such as silicon diodes, resistors, capacitors, and inductors are disposed between the semiconductor structure of a semiconductor light emitting device and the connection layers used to connect the device to an external structure. In some embodiments, the n-contacts to the semiconductor structure are distributed across multiple vias, which are isolated from the p-contacts by one or more dielectric layers. The circuit elements are formed in the contacts-dielectric layers-connection layers stack.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: May 28, 2013
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventors: Jerome C. Bhat, Steven T. Boles
  • Patent number: 8450754
    Abstract: LED layers are grown over a sapphire substrate. Individual flip chip LEDs are formed by trenching or masked ion implantation. Modules containing a plurality of LEDs are diced and mounted on a submount wafer. A submount metal pattern or a metal pattern formed on the LEDs connects the LEDs in a module in series. The growth substrate is then removed, such as by laser lift-off. A semi-insulating layer is formed, prior to or after mounting, that mechanically connects the LEDs together. The semi-insulating layer may be formed by ion implantation of a layer between the substrate and the LED layers. PEC etching of the semi-insulating layer, exposed after substrate removal, may be performed by biasing the semi-insulating layer. The submount is then diced to create LED modules containing series-connected LEDs.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: May 28, 2013
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventors: Michael R. Krames, John E. Epler, Daniel A. Steigerwald, Tal Margalith
  • Patent number: 8445929
    Abstract: Embodiments of the invention include a light emitting structure comprising a light emitting layer. A first luminescent material comprising a phosphor is disposed in a path of light emitted by the light emitting layer. A second luminescent material comprising a semiconductor is also disposed in a path of light emitted by the light emitting layer. The second luminescent material is configured to absorb light emitted by the light emitting layer and emit light of a different wavelength. In some embodiments, one of the first and second luminescent materials may be bonded to the semiconductor structure.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: May 21, 2013
    Assignee: Philips Lumileds Lighting Company LLC
    Inventors: Michael R. Krames, Gerd O. Mueller
  • Patent number: 8431423
    Abstract: An underfill formation technique for LEDs molds a reflective underfill material to encapsulate LED dies mounted on a submount wafer while forming a reflective layer of the underfill material over the submount wafer. The underfill material is then hardened, such as by curing. The cured underfill material over the top of the LED dies is removed using microbead blasting while leaving the reflective layer over the submount surface. The exposed growth substrate is then removed from all the LED dies, and a phosphor layer is molded over the exposed LED surface. A lens is then molded over the LEDs and over a portion of the reflective layer. The submount wafer is then singulated. The reflective layer increases the efficiency of the LED device by reducing light absorption by the submount without any additional processing steps.
    Type: Grant
    Filed: July 16, 2009
    Date of Patent: April 30, 2013
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventors: Grigoriy Basin, Paul S. Martin
  • Patent number: 8421952
    Abstract: A backlight for a display includes a plurality of illumination modules, each illumination module including a light source and a reflective member. A portion of the reflective member is disposed over the light source. A liquid crystal display panel is disposed over the plurality of illumination modules. The reflective member is configured such that a majority of light from the light source is directed parallel to the liquid crystal display panel, to provide uniform illumination of the liquid crystal display panel. In some embodiments, the light source is at least one semiconductor light emitting diode.
    Type: Grant
    Filed: December 3, 2007
    Date of Patent: April 16, 2013
    Assignee: Philips Lumileds Lighting Company, LLC
    Inventors: Gerard Harbers, Takaaki Yagi, Johannes W. H. S. Smitt, Serge J. Bierhuizen
  • Patent number: 8415694
    Abstract: A device includes a light emitting structure and a wavelength conversion member comprising a semiconductor. The light emitting structure is bonded to the wavelength conversion member. In some embodiments, the light emitting structure is bonded to the wavelength conversion member with an inorganic bonding material. In some embodiments, the light emitting structure is bonded to the wavelength conversion member with a bonding material having an index of refraction greater than 1.5.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: April 9, 2013
    Assignee: Philips Lumileds Lighting Company LLC
    Inventors: Michael D. Camras, Michael R. Krames, Wayne L. Snyder, Frank M. Steranka, Robert C. Taber, John J. Uebbing, Douglas W. Pocius, Troy A. Trottier, Christopher H. Lowery, Gerd O. Mueller, Regina B. Mueller-Mach, Gloria E. Hofler
  • Patent number: 8400064
    Abstract: A transient voltage suppressor circuit is disclosed for a plurality (N) of LEDs connected in series. Only one zener diode is created for connection to each node between LEDs, and a pair of zener diodes (the “end” zener diodes) are connected to the two pins (anode and cathode pads) of the series string. Therefore, only N+1 zener diodes are used. The end zener diodes (Q1 and Qn+1) effectively create back-to-back zener diodes across the two pins since the zener diodes share a common p+ substrate. The n+ regions of the end zener diodes Q1 and Qn+1 have the highest breakdown voltage requirement and must be placed relatively far apart. Adjacent n+ regions of the intermediate zener diodes have a much lower breakdown voltage requirement so may be located close together. The zener diodes may be placed within a very small footprint or can be larger for better suppressor performance.
    Type: Grant
    Filed: September 9, 2009
    Date of Patent: March 19, 2013
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventors: Yajun Wei, William D. Collins, III, Daniel A. Steigerwald
  • Patent number: 8384118
    Abstract: Described is a process for forming an LED structure using a laser lift-off process to remove the growth substrate (e.g., sapphire) after the LED die is bonded to a submount. The underside of the LED die has formed on it anode and cathode electrodes that are substantially in the same plane, where the electrodes cover at least 85% of the back surface of the LED structure. The submount has a corresponding layout of anode and cathode electrodes substantially in the same plane. The LED die electrodes and submount electrodes are ultrasonically welded together such that virtually the entire surface of the LED die is supported by the electrodes and submount. Other bonding techniques may also be used. No underfill is used. The growth substrate, forming the top of the LED structure, is then removed from the LED layers using a laser lift-off process.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: February 26, 2013
    Assignees: Koninklijke Philips electronics N.V., Philips Lumileds Lighting Company LLC
    Inventors: Stefano Schiaffino, Daniel A. Steigerwald, Mari Holcomb, Grigoriy Basin, Paul Martin, John Epler
  • Publication number: 20120319554
    Abstract: The invention relates to an electric lamp (102) comprising a primary semiconductor light source (104) in thermal communication with a primary reflector (106). Herein, the primary reflector (106) is reflective, transparent and/or translucent. The primary reflector (106) is configured for transferring heat generated by the primary semiconductor light source (104) during operation away from said primary semiconductor light source (104). As a result, the electric lamp (102) according to the invention effectively reduces the number of parts comprised in the electric lamp (102), thereby lowering the costs of manufacturing the electric lamp (102).
    Type: Application
    Filed: February 28, 2011
    Publication date: December 20, 2012
    Applicants: PHILIPS LUMILEDS LIGHTING COMPANY LLC, KONINKLIJKE PHILIPS ELECTRONICS, N.V.
    Inventors: Berend Jan Willem Ter Weeme, Johannes Petrus Maria Ansems, Salvatore Cassarino, Rudolf Georg Hechfellner
  • Patent number: 8334155
    Abstract: A substrate including a host and a seed layer bonded to the host is provided, then a semiconductor structure including a light emitting layer disposed between an n-type region and a p-type region is grown on the seed layer. In some embodiments, a bonding layer bonds the host to the seed layer. The seed layer may be thinner than a critical thickness for relaxation of strain in the semiconductor structure, such that strain in the semiconductor structure is relieved by dislocations formed in the seed layer, or by gliding between the seed layer and the bonding layer an interface between the two layers. In some embodiments, the host may be separated from the semiconductor structure and seed layer by etching away the bonding layer.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: December 18, 2012
    Assignee: Philips Lumileds Lighting Company LLC
    Inventors: Michael R. Krames, Nathan F. Gardner, John E. Epler
  • Patent number: 8334543
    Abstract: Embodiments of the invention include a substrate comprising a host and a seed layer bonded to the host, and a semiconductor structure comprising a light emitting layer disposed between an n-type region and a p-type region grown over the seed layer. A variation in index of refraction in a direction perpendicular to a growth direction of the semiconductor structure is disposed between the host and the light emitting layer.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: December 18, 2012
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventors: Aurelien J. F. David, Michael R. Krames, Melvin B. McLaurin
  • Patent number: 8319247
    Abstract: A semiconductor light emitting device is mounted on a support substrate. The support substrate is disposed in an opening in a carrier. In some embodiments, the support substrate is a ceramic tile and the carrier is a low cost material with a lateral extent large enough to support a lens molded over or attached to the carrier.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: November 27, 2012
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company LLC
    Inventors: Serge J. Bierhuizen, James G. Neff
  • Patent number: 8314443
    Abstract: A device includes a semiconductor structure comprising a light emitting layer disposed between an n-type region and a p-type region. The semiconductor structure includes an n-contact region and a p-contact region. A cross section of the n-contact region comprises a plurality of first regions wherein portions of the light emitting layer and p-type region are removed to expose the n-type region. The plurality of first regions are separated by a plurality of second regions wherein the light emitting layer and p-type region remain in the device. The device further includes a first metal contact formed over the semiconductor structure in the p-contact region and a second metal contact formed over the semiconductor structure in the n-contact region. The second metal contact is in electrical contact with at least one of the second regions in the n-contact region.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: November 20, 2012
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company LLC
    Inventor: John E Epler