Patents Assigned to Philips Lumileds Lighting Company, LLC
  • Patent number: 8061884
    Abstract: Various embodiments of corner-coupled backlights are described, where one or more white light LEDs are optically coupled to a truncated corner edge of a solid rectangular light guide backlight. The one or more LEDs are mounted in a small reflective cavity, whose output opening is coupled to the truncated corner of the light guide. The reflective cavity provides a more uniform light distribution at a wide variety of angles to the face of the truncated corner to better distribute light throughout the entire light guide volume. To enable a thinner light guide, the LED die is positioned in the reflective cavity so that the major light emitting surface of the LED is parallel to the top surface of the light guide. The reflective cavity reflects the upward LED light toward the edge of the light guide.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: November 22, 2011
    Assignee: Philips Lumileds Lighting Company, LLC
    Inventors: Gerard Harbers, Mark Pugh, Serge Bierhuizen
  • Publication number: 20110272721
    Abstract: A rounded square lens is used instead of a hemispherical lens in an LED package to produce a substantially Lambertian light emission pattern. A cross-sectional view of the rounded square lens cut along its diagonal forms a semicircular surface so as to emulate a hemispherical lens in areas close to the diagonal. A cross-sectional view of the lens cut along its width bisecting the lens forms a bullet shaped surface narrower than the semicircular surface but having the same height as the semicircular surface. The four corners of the lens are rounded. The surface of the lens smoothly transitions between the two surface shapes. Since the rounded square lens has a diagonal dimension larger than a maximum allowable diameter of a hemispherical lens in the same package body, a larger LED die may be used with the rounded square lens to output more light without increasing the size of the package while maintaining a Lambertian emission.
    Type: Application
    Filed: May 7, 2010
    Publication date: November 10, 2011
    Applicants: PHILIPS LUMILEDS LIGHTING COMPANY, LLC, KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventor: Mark BUTTERWORTH
  • Patent number: 8053972
    Abstract: A light-emitting device comprising a population of quantum dots (QDs) embedded in a host matrix and a primary light source which causes the QDs to emit secondary light and a method of making such a device. The size distribution of the QDs is chosen to allow light of a particular color to be emitted therefrom. The light emitted from the device may be of either a pure (monochromatic) color, or a mixed (polychromatic) color, and may consist solely of light emitted from the QDs themselves, or of a mixture of light emitted from the QDs and light emitted from the primary source. The QDs desirably are composed of an undoped semiconductor such as CdSe, and may optionally be overcoated to increase photoluminescence.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: November 8, 2011
    Assignees: Massachusetts Institute of Technology, Philips Lumileds Lighting Company LLC
    Inventors: Moungi G. Bawendi, Jason Heine, Klavs F. Jensen, Jeffrey N. Miller, Ronald L. Moon
  • Publication number: 20110266569
    Abstract: An LED wafer with a growth substrate is attached to a carrier substrate by, for example, a heat-releasable adhesive so that the LED layers are sandwiched between the two substrates. The growth substrate is then removed, such as by laser lift-off. The exposed surface of the LED layers is then etched to improve light extraction. A preformed phosphor sheet, matched to the LEDs, is then affixed to the exposed LED layer. The phosphor sheet, LED layers, and, optionally, the carrier substrate are then diced to separate the LEDs. The LED dice are released from the carrier substrate by heat or other means, and the individual LED dice are mounted on a submount wafer using a pick-and-place machine. The submount wafer is then diced to produce individual LEDs. The active layer may generate blue light, and the blue light and phosphor light may generate white light having a predefined white point.
    Type: Application
    Filed: April 30, 2010
    Publication date: November 3, 2011
    Applicants: PHILIPS LUMILEDS LIGHTING COMPANY, LLC, KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Grigoriy Basin, Paul S. Martin
  • Publication number: 20110266568
    Abstract: A device includes a semiconductor structure comprising a light emitting layer disposed between an n-type region and a p-type region. A bottom contact disposed on a bottom surface of the semiconductor structure is electrically connected to one of the n-type region and the p-type region. A top contact disposed on a top surface of the semiconductor structure is electrically connected to the other of the n-type region and the p-type region. A mirror is aligned with the top contact. The mirror includes a trench formed in the semiconductor structure and a reflective material disposed in the trench, wherein the trench extends through the light emitting layer.
    Type: Application
    Filed: April 29, 2010
    Publication date: November 3, 2011
    Applicants: PHILIPS LUMILEDS LIGHTING COMPANY, LLC, KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Rafael I. ALDAZ, Aurelien J.F. DAVID
  • Patent number: 8049234
    Abstract: Light emitting devices with improved light extraction efficiency are provided. The light emitting devices have a stack of layers including semiconductor layers comprising an active region. The stack is bonded to a transparent optical element.
    Type: Grant
    Filed: October 8, 2007
    Date of Patent: November 1, 2011
    Assignee: Philips Lumileds Lighting Company LLC
    Inventors: Michael D. Camras, Michael R. Krames, Wayne L. Snyder, Frank M. Steranka, Robert C. Taber, John J. Uebbing, Douglas W. Pocius, Troy A. Trottier, Christopher H. Lowery, Gerd O. Mueller, Regina B. Mueller-Mach, Gloria E. Hofler
  • Publication number: 20110260178
    Abstract: A light source comprising a semiconductor light emitting device is connected to a mount. The light emitting device comprises a plurality of segments with neighboring segments spaced less than 200 microns apart. In some embodiments, multiple segments are grown on a single growth substrate. Each segment comprises a light emitting layer disposed between an n-type region and a p-type region. A spacer is positioned on a top surface of the mount. The light emitting device is positioned in an opening in the spacer. A plurality of collimators is attached to the spacer, wherein each collimator is aligned with a single segment.
    Type: Application
    Filed: April 26, 2010
    Publication date: October 27, 2011
    Applicants: PHILIPS LUMILEDS LIGHTING COMPANY, LLC, KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventor: Serge J. BIERHUIZEN
  • Patent number: 8038905
    Abstract: The invention concerns an illumination system for generation of colored, especially amber or red light, comprising a radiation source and a fluorescent material comprising at least one phosphor capable of absorbing a part of light emitted by the radiation source and emitting light of wavelength different from that of the absorbed light; wherein said at least one phosphor is a amber to red emitting a rare earth metal-activated oxonitridoalumosilicate of general formula (Ca1?x?y?zSrxBayMgz)1?n(Al1?a+bBa)Si1?bN3?bOb:Ren, wherein 0?x?1, 0?y?1, 0?z?1, 0?a?1, 0<b?1 and 0.002?n?0.2 and RE is selected from europium(II) and cerium(III).
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: October 18, 2011
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventors: Regina Mueller-Mach, Gerd Mueller, Jorge Meyer, Peter J. Schmidt, Walter Mayr, Hans-Dieter Bausen
  • Patent number: 8039866
    Abstract: A mount for a semiconductor device includes a carrier, at least two metal leads disposed on a bottom surface of the carrier, and a cavity extending through a thickness of the carrier to expose a portion of the top surfaces of the metal leads. A semiconductor light emitting device is positioned in the cavity and is electrically and physically connected to the metal leads. The carrier may be, for example, silicon, and the leads may be multilayer structures, for example a thin gold layer connected to a thick copper layer.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: October 18, 2011
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventors: M. George Craford, Michael R. Krames
  • Patent number: 8033691
    Abstract: A substantially hemispherical lens surrounding an LED die is described that creates a sparkle as an observer views the lens from different angles. The lens is formed of an interconnected array of 100-10,000 or more lenslets. Each lenslet focuses an image of the LED die at an output of the lenslet such that the LED die image area at the output is less than 1/9 the area of the LED die to create a substantially point source image of the LED die at an outer surface of the lens. When the LED die is energized, the shape of each lenslet causes point source images of the LED die to be perceived by an observer at various viewing angles, such that the emitted LED light appears to sparkle and speckle as the observer moves relative to the lens.
    Type: Grant
    Filed: May 12, 2009
    Date of Patent: October 11, 2011
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventors: Serge Bierhuizen, Mark Butterworth
  • Publication number: 20110241056
    Abstract: Structures are incorporated into a semiconductor light emitting device which may increase the extraction of light emitted at glancing incidence angles. In some embodiments, the device includes a low index material that directs light away from the metal contacts by total internal reflection. In some embodiments, the device includes extraction features such as cavities in the semiconductor structure which may extract glancing angle light directly, or direct the glancing angle light into smaller incidence angles which are more easily extracted from the device.
    Type: Application
    Filed: June 16, 2011
    Publication date: October 6, 2011
    Applicants: KONINKLIJKE PHILIPS ELECTRONICS N.V., PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventors: Aurelien J.F. David, Henry Kwong-Hin Choy, Jonathan J. Wierer, JR.
  • Publication number: 20110233580
    Abstract: A semiconductor light emitting device is mounted on a support substrate. The support substrate is disposed in an opening in a carrier. In some embodiments, the support substrate is a ceramic tile and the carrier is a low cost material with a lateral extent large enough to support a lens molded over or attached to the carrier.
    Type: Application
    Filed: March 25, 2010
    Publication date: September 29, 2011
    Applicants: KONINKLIJKE PHILIPS ELECTRONICS N.V., PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventors: Serge J. BIERHUIZEN, James G. NEFF
  • Publication number: 20110223696
    Abstract: An underfill technique for LEDs uses compression molding to simultaneously encapsulate an array of flip-chip LED dies mounted on a submount wafer. The molding process causes liquid underfill material (or a softened underfill material) to fill the gap between the LED dies and the submount wafer. The underfill material is then hardened, such as by curing. The cured underfill material over the top and sides of the LED dies is removed using microbead blasting. The exposed growth substrate is then removed from all the LED dies by laser lift-off, and the underfill supports the brittle epitaxial layers of each LED die during the lift-off process. The submount wafer is then singulated. This wafer-level processing of many LEDs simultaneously greatly reduces fabrication time, and a wide variety of materials may be used for the underfill since a wide range of viscosities is tolerable.
    Type: Application
    Filed: May 25, 2011
    Publication date: September 15, 2011
    Applicants: KONINKLIJKE PHILIPS ELECTRONICS N.V., PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventors: Grigoriy Basin, Frederic Diana, Paul S. Martin, Dima Simonian
  • Patent number: 8017246
    Abstract: A silicone resin composition and process for coating a light transmitting surface of an optoelectronic device is disclosed. The process involves applying a silicone resin to the light transmitting surface, and causing the silicone resin to cure to form a light transmitting protective coating on the light transmitting surface, the silicone resin having a sufficiently low proportion of organosiloxanes having molecular weights of up to about 1000, such that the protective coating includes less than about 10% of the organosiloxanes having molecular weights of up to about 1000.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: September 13, 2011
    Assignees: Philips Lumileds Lighting Company, LLC, Shin-Etsu Chemical Co., Ltd.
    Inventors: Yasumasa Morita, Nicolaas Joseph Martin van Leth, Cheun Jye Yow, Wai Choo Chai, Kinya Kodama, Tsutomu Kashiwagi, Toshio Shiobara
  • Publication number: 20110205049
    Abstract: A device includes a light source, a sensor, and a controller. The light source includes at least one light emitting device connected to a mount. The light emitting device comprises a plurality of segments with neighboring segments spaced less than 200 microns apart. In some embodiments, the plurality of segments are grown on a single growth substrate. Each segment includes a III-nitride light emitting layer disposed between an n-type region and a p-type region. The mount is configured such that at least two segments may be independently activated. The controller is coupled between the sensor and the mount. The controller is operable to receive an input from the sensor and based on the input, selectively illuminate at least one segment in the light source.
    Type: Application
    Filed: February 22, 2010
    Publication date: August 25, 2011
    Applicants: KONINKLIJKE PHILIPS ELECTRONICS N.V., PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventors: Jeffrey D. KMETEC, Frank M. STERANKA
  • Publication number: 20110198780
    Abstract: A flexible film comprising a wavelength converting material is positioned over a light source. The flexible film is conformed to a predetermined shape. In some embodiments, the light source is a light emitting diode mounted on a support substrate. The diode is aligned with an indentation in a mold such that the flexible film is disposed between the support substrate and the mold. Transparent molding material is disposed between the support substrate and the mold. The support substrate and the mold are pressed together to cause the molding material to fill the indentation. The flexible film conforms to the shape of the light source or the mold.
    Type: Application
    Filed: February 16, 2010
    Publication date: August 18, 2011
    Applicants: KONINKLIJKE PHILIPS ELECTRONICS N.V., PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventors: Grigoriy BASIN, Paul S. MARTIN
  • Patent number: 7994514
    Abstract: One or more circuit elements such as silicon diodes, resistors, capacitors, and inductors are disposed between the semiconductor structure of a semiconductor light emitting device and the connection layers used to connect the device to an external structure. In some embodiments, the n-contacts to the semiconductor structure are distributed across multiple vias, which are isolated from the p-contacts by one or more dielectric layers. The circuit elements are formed in the contacts-dielectric layers-connection layers stack.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: August 9, 2011
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventors: Jérôme C. Bhat, Steven T. Boles
  • Patent number: 7989824
    Abstract: A semiconductor structure comprising a light emitting layer disposed between an n-type region and a p-type region is formed. A first metal contact is formed on a portion of the n-type region and a second metal contact is formed on a portion of the p-type region. The first and second metal contacts are formed on a same side of the semiconductor structure. A dielectric material is disposed between the first and second metal contacts. The dielectric material is in direct contact with a portion of the semiconductor structure, a portion of the first metal contact, and a portion of the second metal contact.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: August 2, 2011
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventors: Rafael I. Aldaz, James G. Neff
  • Patent number: 7991034
    Abstract: A semiconductor surface emitting optical amplifier chip utilizes a zigzag optical path within an optical amplifier chip. The zigzag optical path couples two or more gain elements. Each individual gain element has a circular aperture and includes a gain region and at least one distributed Bragg reflector. In one implementation the optical amplifier chip includes at least two gain elements that are spaced apart and have a fill factor no greater than 0.5. As a result the total optical gain may be increased. The optical amplifier chip may be operated as a superluminescent LED. Alternately, the optical amplifier chip may be used with external optical elements to form an extended cavity laser. Individual gain elements may be operated in a reverse biased mode to support gain-switching or mode-locking.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: August 2, 2011
    Assignees: Koninklijke Philips Electronics N.V., Philips Lumileds Lighting Company, LLC
    Inventor: Michael Jansen
  • Publication number: 20110175138
    Abstract: One or more circuit elements such as silicon diodes, resistors, capacitors, and inductors are disposed between the semiconductor structure of a semiconductor light emitting device and the connection layers used to connect the device to an external structure. In some embodiments, the n-contacts to the semiconductor structure are distributed across multiple vias, which are isolated from the p-contacts by one or more dielectric layers. The circuit elements are formed in the contacts-dielectric layers-connection layers stack.
    Type: Application
    Filed: April 1, 2011
    Publication date: July 21, 2011
    Applicants: KONINKLIJKE PHILIPS ELECTRONICS N.V., PHILIPS LUMILEDS LIGHTING COMPANY, LLC
    Inventors: Jérôme C. Bhat, Steven T. Boles