Patents Assigned to Sasol Technology (Proprietary) Limited
  • Patent number: 11505749
    Abstract: A method for starting a slurry bubble column reactor that includes a reactor vessel holding a settled or slumped bed of particles and a liquid phase from which the particles have settled includes introducing a flow of a re-suspension liquid into the settled or slumped bed to loosen the settled or slumped bed. The introduction of the re-suspension liquid takes place before the introduction of any gas into the settled or slumped bed, or together with feeding of gas into the settled or slumped bed, provided that, if gas is fed together with the re-suspension liquid into the settled or slumped bed before the settled or slumped bed has been loosened, the gas has a superficial gas velocity in the reactor below 10 cm/s. Once the settled or slumped bed has been loosened by at least the re-suspension liquid, gas is passed at a superficial gas velocity above 10 cm/s through the liquid phase.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: November 22, 2022
    Assignee: SASOL TECHNOLOGY PROPRIETARY LIMITED
    Inventors: Willem Adriaan Booysen, Ruben Oortman
  • Patent number: 10502408
    Abstract: A method of operating a combined heat and power plant (10) (CHP plant) includes generating hot flue gas in a hot flue gas generator (12) and cooling the hot flue gas in a sequence of cooling steps to recover heat and to generate steam in a heat recovery steam generator (16) (HRSG). The HRSG (16) includes an HP steam evaporator (26) downstream of the hot flue gas generator (12) in which HP steam is generated and in which the hot flue gas is cooled, at least one HP steam superheater (20, 22) between the hot flue gas generator (12) and the HP steam evaporator (26) in which at least HP steam from the HP steam evaporator is superheated and in which the hot flue gas is cooled, and an MP steam superheater (24) upstream of the HP steam evaporator (26) in which MP steam is superheated by the hot flue gas and in which hot flue gas is cooled.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: December 10, 2019
    Assignee: SASOL TECHNOLOGY PROPRIETARY LIMITED
    Inventors: Franco Gasparini, Inida Papa, Corné Welgemoed
  • Patent number: 10487273
    Abstract: A process to produce olefinic products suitable for use as or conversion to oilfield hydrocarbons includes separating an olefins-containing Fischer-Tropsch condensate into a light fraction, an intermediate fraction and a heavy fraction, oligomerising at least a portion of the light fraction to produce a first olefinic product which includes branched internal olefins, and carrying out either one or both of the steps of (i) dehydrogenating at least a portion of the intermediate fraction to produce an intermediate product which includes internal olefins and alpha-olefins, and synthesising higher olefins from the intermediate product which includes internal olefins and alpha-olefins to produce a second olefinic product, and (ii) dimerising at least a portion of the intermediate fraction to produce a second olefinic product. At least a portion of the heavy fraction is dehydrogenated to produce a third olefinic product which includes internal olefins.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: November 26, 2019
    Assignee: Sasol Technology Proprietary Limited
    Inventor: Ewald Watermeyer De Wet
  • Patent number: 10322393
    Abstract: A method of operating a slurry phase apparatus includes feeding one or more gaseous reactants into a slurry body of solid particulate material suspended in a suspension liquid contained inside a vessel. The one or more gaseous reactants are fed into the slurry body through a gas distributor having downward facing gas outlets and are fed towards a fluid impermeable partition spanning across the vessel below the gas distributor. The partition divides the vessel into a slurry volume above the partition and a bottom volume below the partition. A differential pressure is maintained over the partition between predefined limits by manipulating or allowing changes in the pressure in the bottom volume by employing a pressure transfer passage establishing flow or pressure communication between the bottom volume and a head space above the slurry body.
    Type: Grant
    Filed: December 27, 2017
    Date of Patent: June 18, 2019
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: André Peter Steynberg, Evert Phillippus Kleynhans, Marshall Stephen Lee, Hermanus Gerhardus Nel, Jako Louw
  • Patent number: 10302296
    Abstract: A method of operating a combined heat and power plant includes, when there is insufficient heat removal from a hot flue gas downstream from a hot flue gas generator but upstream of a steam evaporator, as a result of insufficient mass flow of imported steam to a steam superheater, to prevent the hot flue gas temperature downstream of the steam superheater from rising to or above a predetermined limit, quenching steam inside the steam superheater or quenching steam being fed to the steam superheater by injecting boiler feed water or condensate into the steam to produce steam in the steam superheater. The quenching increases the removal of heat from the hot flue gas and reduces the hot flue gas temperature downstream of the steam superheater to ensure that the hot flue gas temperature downstream of the steam superheater does not rise to or above the predetermined limit.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: May 28, 2019
    Assignee: Sasol Technology Proprietary Limited
    Inventors: Franco Gasparini, Corné Welgemoed
  • Publication number: 20190153339
    Abstract: A process to produce olefinic products suitable for use as or conversion to oilfield hydrocarbons includes separating an olefins-containing Fischer-Tropsch condensate into a light fraction, an intermediate fraction and a heavy fraction, oligomerising at least a portion of the light fraction to produce a first olefinic product which includes branched internal olefins, and carrying out either one or both of the steps of (i) dehydrogenating at least a portion of the intermediate fraction to produce an intermediate product which includes internal olefins and alpha-olefins, and synthesising higher olefins from the intermediate product which includes internal olefins and alpha-olefins to produce a second olefinic product, and (ii) dimerising at least a portion of the intermediate fraction to produce a second olefinic product. At least a portion of the heavy fraction is dehydrogenated to produce a third olefinic product which includes internal olefins.
    Type: Application
    Filed: January 23, 2019
    Publication date: May 23, 2019
    Applicant: Sasol Technology Proprietary Limited
    Inventor: Ewald Watermeyer De Wet
  • Patent number: 10294136
    Abstract: A process for producing a biomass for use in the treatment of Fischer-Tropsch (FT) reaction water includes introducing a nutrient component comprising Carbon (C), Nitrogen (N) and Phosphorus (P), and water into an aerobic reaction zone containing a sewage sludge, and maintaining, in the aerobic reaction zone and under aerobic conditions, a F/M ratio of 0.25-2 kg COD/kg MLSS, where F/M=Food to Microorganism Ratio; COD=Chemical Oxygen Demand, expressed as mg oxygen/B of liquid in the aerobic reaction zone; and MLSS=Mixed Liquor Suspended Solids, expressed as mg solids in the aerobic reaction zone/B of liquid in the aerobic reaction zone. The F/M ratio is maintained for a period of time, to produce a biomass suitable for use in the treatment of FT reaction water.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: May 21, 2019
    Assignee: SASOL TECHNOLOGY (PROPRIETARY) LIMITED
    Inventors: Trevor David Phillips, Maria Petronella Augustyn, Ignatius Michael Van Niekerk
  • Patent number: 10233789
    Abstract: A method of operating a combined heat and power plant (10) (CHP plant) includes generating hot flue gas and cooling the hot flue gas in a sequence of cooling steps to recover heat and to generate steam in a heat recovery steam generator (16) (HRSG). The HRSG (16) includes an LP steam evaporator (36) designed to generate steam at least over a pressure range of from 2 bar(g) to 18 bar(g) so that either LP steam or MP steam can selectively be generated by the LP steam generator (36), thereby to cool the hot flue gas, and an MP steam superheater (24) upstream of the LP steam evaporator (36) to superheat MP steam in heat exchange with the hot flue gas thereby to cool the hot flue gas.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: March 19, 2019
    Assignee: Sasol Technology Proprietary Limited
    Inventors: Franco Gasparini, Rian Wessels, Corné Welgemoed
  • Patent number: 10190057
    Abstract: A method (10) of synthesizing Fischer-Tropsch products (20) includes feeding a synthesis gas (30) to a moving-bed Fischer-Tropsch synthesis reactor (16) containing a Fischer-Tropsch catalyst in a moving catalyst bed and catalytically converting at least a portion of the synthesis gas (30) in the moving catalyst bed to Fischer-Tropsch products (20). The Fischer-Tropsch products (20) are removed from the moving-bed Fischer-Tropsch synthesis reactor (16). The method (10) further includes, while the moving-bed Fisher-Tropsch synthesis reactor (16) is on-line, withdrawing a portion (50) of the Fischer-Tropsch catalyst from the moving-bed Fischer-Tropsch synthesis reactor (16), adding a reactivated Fischer-Tropsch catalyst (57, 58) to the moving-bed Fischer-Tropsch synthesis reactor (16), and adding a fresh Fischer-Tropsch catalyst (60,58), in addition to the reactivated catalyst (57,58), to the moving-bed Fischer-Tropsch synthesis reactor (16).
    Type: Grant
    Filed: October 26, 2015
    Date of Patent: January 29, 2019
    Assignee: SASOL TECHNOLOGY PROPRIETARY LIMITED
    Inventors: Richard Neil Walsh, Jean Louis Gauché, Hendrik Wilhelmus Joubert, Albertus Maritz Van Wyk, Johannes Henning Viljoen, Marcel Juergen Krause
  • Patent number: 10190063
    Abstract: A process (20) to produce olefinic products suitable for use as or conversion to oilfield hydrocarbons includes separating (42) an olefins-containing Fischer-Tropsch condensate (64) into a light fraction (68), an intermediate fraction (82) and a heavy fraction (94), oligomerizing (44) at least a portion of the light fraction (68) to produce a first olefinic product (72) which includes branched internal olefins, and carrying out either one or both of the steps of (i) dehydrogenating (50) at least a portion of the intermediate fraction (82) to produce an intermediate product (84) which includes internal olefins and alpha-olefins, and synthesizing (52) higher olefins from the intermediate product which includes internal olefins and alpha-olefins to produce a second olefinic product (86), and (ii) dimerizing (52) at least a portion of the intermediate fraction to produce a second olefinic product (86).
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: January 29, 2019
    Assignee: Sasol Technology Proprietary Limited
    Inventor: Ewald Watermeyer De Wet
  • Patent number: 10058838
    Abstract: A method is provided of shutting down an operating three-phase slurry bubble column reactor (10) having downwardly directed gas distribution nozzles (30) submerged in a slurry body (19) of solid particulate material suspended in a suspension liquid contained inside a reactor vessel (12), with the gas distribution nozzles (30) being in flow communication with a gas feed line (26) through which gas is fed to the gas distribution nozzles (30) by means of which the gas is injected downwardly into the slurry body (19). The method includes abruptly stopping flow of gas from the gas feed line (26) to the gas distribution nozzles (30) to trap gas in the gas distribution nozzles (30) thereby to inhibit slurry ingress upwardly into the gas distribution nozzles (30).
    Type: Grant
    Filed: December 4, 2014
    Date of Patent: August 28, 2018
    Assignee: SASOL TECHNOLOGY PROPRIETARY LIMITED
    Inventors: André Peter Steynberg, Darrell Duane Kinzler
  • Publication number: 20180117558
    Abstract: A method of operating a slurry phase apparatus includes feeding one or more gaseous reactants into a slurry body of solid particulate material suspended in a suspension liquid contained inside a vessel. The one or more gaseous reactants are fed into the slurry body through a gas distributor having downward facing gas outlets and are fed towards a fluid impermeable partition spanning across the vessel below the gas distributor. The partition divides the vessel into a slurry volume above the partition and a bottom volume below the partition. A differential pressure is maintained over the partition between predefined limits by manipulating or allowing changes in the pressure in the bottom volume by employing a pressure transfer passage establishing flow or pressure communication between the bottom volume and a head space above the slurry body.
    Type: Application
    Filed: December 27, 2017
    Publication date: May 3, 2018
    Applicant: Sasol Technology (Proprietary) Limited
    Inventors: André Peter Steynberg, Evert Phillippus Kleynhans, Marshall Stephen Lee, Hermanus Gerhardus Nel, Jako Louw
  • Patent number: 9937476
    Abstract: A method of operating a slurry phase apparatus includes feeding one or more gaseous reactants into a slurry body of solid particulate material suspended in a suspension liquid contained inside a vessel. The one or more gaseous reactants are fed into the slurry body through a gas distributor having downward facing gas outlets and are fed towards a fluid impermeable partition spanning across the vessel below the gas distributor. The partition divides the vessel into a slurry volume above the partition and a bottom volume below the partition. A differential pressure is maintained over the partition between predefined limits by manipulating or allowing changes in the pressure in the bottom volume by employing a pressure transfer passage establishing flow or pressure communication between the bottom volume and a head space above the slurry body.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: April 10, 2018
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: André Peter Steynberg, Evert Phillippus Kleynhans, Marshall Stephen Lee, Hermanus Gerhardus Nel, Jako Louw
  • Patent number: 9879189
    Abstract: A method of treating or refining a wax includes hydrogenating a feed wax which has an MEK-solubility oils content of more 0.5 weight % to provide a hydrogenated wax. Thereafter the hydrogenated wax is de-oiled to reduce the MEK-solubility oils content of the hydrogenated wax, producing a refined wax or a wax product.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: January 30, 2018
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Dylan S. Loudon, Daniel S. Bezuidenhout, Gernot Meyer, Ingo Behrmann, Hans-Jorg Scheidat, Heiko Feitkenhauer
  • Publication number: 20170211001
    Abstract: A process (20) to produce olefinic products suitable for use as or conversion to oilfield hydrocarbons includes separating (42) an olefins-containing Fischer-Tropsch condensate (64) into a light fraction (68), an intermediate fraction (82) and a heavy fraction (94), oligomerising (44) at least a portion of the light fraction (68) to produce a first olefinic product (72) which includes branched internal olefins, and carrying out either one or both of the steps of (i) dehydrogenating (50) at least a portion of the intermediate fraction (82) to produce an intermediate product (84) which includes internal olefins and alpha-olefins, and synthesising (52) higher olefins from the intermediate product which includes internal olefins and alpha-olefins to produce a second olefinic product (86), and (ii) dimerising (52) at least a portion of the intermediate fraction to produce a second olefinic product (86).
    Type: Application
    Filed: July 22, 2015
    Publication date: July 27, 2017
    Applicant: Sasol Technology Proprietary Limited
    Inventor: Ewald Watermeyer De Wet
  • Patent number: 9687822
    Abstract: A process for preparing a cobalt-containing hydrocarbon synthesis catalyst precursor includes calcining a loaded catalyst support comprising a catalyst support supporting a cobalt compound. The calcination includes heating the loaded catalyst support over a heating temperature range of 90° C. to 220° C. using (i) one or more high heating rate periods during the heating over the heating temperature range wherein heating of the loaded catalyst support takes place at a heating rate of at least 10° C./minute, and wherein a gas velocity of at least 5 m3n/kg cobalt compound/hour is effected over the loaded catalyst support, and (ii) one or more low heating rate periods during the heating over the heating temperature range wherein heating of the loaded catalyst support takes place at a heating rate of less than 6° C./minute. The cobalt compound is thereby calcined, with a cobalt-containing hydrocarbon synthesis catalyst precursor being produced.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: June 27, 2017
    Assignee: SASOL TECHNOLOGY (PROPRIETARY) LIMITED
    Inventors: Sean Barradas, Cornelia Carolina Eloff, Jacobus Lucas Visagie
  • Publication number: 20170022423
    Abstract: A Fischer-Tropsch synthesis process (10) includes feeding gaseous reactants (20) including at least CO, H2 and C02 into a reactor (14) holding an iron-based catalyst. The H2 and CO are fed in a H2:CO molar ratio of at least 2:1 and the C02 and CO are fed in a C02:CO molar ratio of at least 0.5:1. The reactor (14) is controlled at an operating temperature in the range from about 260° C. to about 300° C. A liquid product (22) and a gaseous product (24) including hydrocarbons, CO, H2, water and C02 are withdrawn from the reactor (14).
    Type: Application
    Filed: March 19, 2015
    Publication date: January 26, 2017
    Applicant: SASOL TECHNOLOGY PROPRIETARY LIMITED
    Inventor: Frederick Gideon Botes
  • Patent number: 9546117
    Abstract: A process for the tetramerization of ethylene includes contacting ethylene with a catalyst under ethylene oligomerization conditions. The catalyst comprises a source of chromium, a ligating compound, and an activator. The ligating compound includes a phosphine that forms part of a cyclic structure.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: January 17, 2017
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Molise Stephen Mokhadinyana, Munaka Christopher Maumela, Moses Mokgolela Mogorosi, Matthew James Overett, Jan-Albert Van Den Berg, Werner Janse Van Rensburg, Kevin Blann
  • Patent number: 9539567
    Abstract: A method of preparing a modified catalyst support comprises contacting a catalyst support material with a modifying component precursor in an impregnating liquid medium. The impregnating liquid medium comprises a mixture of water and an organic liquid solvent for the modifying component precursor. The mixture contains less than 17% by volume water based on the total volume of the impregnating liquid medium. The modifying component precursor comprises a compound of a modifying component selected from the group consisting of Si, Zr, Co, Ti, Cu, Zn, Mn, Ba, Ni, Al, Fe, V, Hf, Th, Ce, Ta, W, La and mixtures of two or more thereof. A modifying component containing catalyst support material is thus obtained. Optionally, the modifying component containing catalyst support material is calcined at a temperature above 100° C. to obtain a modified catalyst support.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: January 10, 2017
    Assignee: SASOL TECHNOLOGY (PROPRIETARY) LIMITED
    Inventors: Jacobus Lucas Visagie, Tanja Allers, Frederik Marie Paul Rafael Van Laar, Frederik Borninkhof, Jana Heloise Taljaard, Rita Meyer
  • Patent number: 9533923
    Abstract: A process for the oligomerization, preferably the tetramerization, of ethylene to predominantly 1-hexene or 1-octene or mixtures of 1-hexene and 1-octene includes contacting ethylene with a catalyst under ethylene oligomerization conditions. The catalyst comprises a source of chromium, a diphosphine ligating compound, and optionally an activator. The diphosphine ligating compound includes at least one substituted aromatic ring bonded to a phosphorous atom. The substituted aromatic ring is substituted at a ring atom adjacent to the ring atom bonded to the respective phosphorous atom with a group Y, where Y is of the form —AREWG, A being O, S or NR5, where R5 is a hydrocarbyl, heterohydrocarbyl or organoheteryl group, and REWG is an electron withdrawing group.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: January 3, 2017
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Moses Mokgolela Mogorosi, Munaka Christopher Maumela, Matthew James Overett