Patents Assigned to Seoul Opto Device Co., Ltd.
  • Publication number: 20130313577
    Abstract: Embodiments of the invention provide a crystalline aluminum carbide layer, a laminate substrate having the crystalline aluminum carbide layer formed thereon, and a method of fabricating the same. The laminate substrate has a GaN layer including a GaN crystal and an AlC layer including an AlC crystal. Further, the method of fabricating the laminate substrate, which has the AlN layer including the AlN crystal and the AlC layer including the AlC crystal, includes supplying a carbon containing gas and an aluminum containing gas to grow the AlC layer.
    Type: Application
    Filed: May 17, 2011
    Publication date: November 28, 2013
    Applicant: SEOUL OPTO DEVICE CO., LTD
    Inventor: Shiro Sakai
  • Patent number: 8592232
    Abstract: Disclosed are a wafer level LED package and a method of fabricating the same. The method of fabricating a wafer level LED package includes: forming a plurality of semiconductor stacks on a first substrate, each of the semiconductor stacks comprising a first-conductivity-type semiconductor layer, a second-conductivity-type semiconductor layer, and an active region disposed between the first-conductivity-type semiconductor layer and the second-conductivity-type semiconductor layer; preparing a second substrate comprising first lead electrodes and second lead electrodes arranged corresponding to the plurality of semiconductor stacks; bonding the plurality of semiconductor stacks to the second substrate; and cutting the first substrate and the second substrate into a plurality of packages after the bonding is completed. Accordingly, the wafer level LED package is provided.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: November 26, 2013
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Dae Woong Suh, Chung Hoon Lee
  • Publication number: 20130292645
    Abstract: Disclosed herein is a high efficiency light emitting diode. The light emitting diode includes: a semiconductor stack positioned over a support substrate; a reflective metal layer positioned between the support substrate and the semiconductor stack to ohmic-contact a p-type compound semiconductor layer of the semiconductor stack and having a groove exposing the semiconductor stack; a first electrode pad positioned on an n-type compound semiconductor layer of the semiconductor stack; an electrode extension extending from the first electrode pad and positioned over the groove region; and an upper insulating layer interposed between the first electrode pad and the semiconductor stack. In addition, the n-type compound semiconductor layer includes an n-type contact layer, and the n-type contact layer has a Si doping concentration of 5 to 7×1018/cm3 and a thickness in the range of 5 to 10 um.
    Type: Application
    Filed: December 6, 2011
    Publication date: November 7, 2013
    Applicant: Seoul Opto Device Co., Ltd.
    Inventors: Jun Ho Yun, Ki Bum Nam, Joon Hee Lee, Chang Youn Kim, Hong Jae Yoo, Sung Hoon Hong
  • Patent number: 8575594
    Abstract: A light emitting diode (LED) for minimizing crystal defects in an active region and enhancing recombination efficiency of electrons and holes in the active region includes non-polar GaN-based semiconductor layers grown on a non-polar substrate. The semiconductor layers include a non-polar N-type semiconductor layer, a non-polar P-type semiconductor layer, and non-polar active region layers positioned between the N-type semiconductor layer and the P-type semiconductor layer. The non-polar active region layers include a well layer and a barrier layer with a superlattice structure.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: November 5, 2013
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Chung Hoon Lee, Ki Bum Nam, Dae Sung Kal
  • Patent number: 8575637
    Abstract: An ultraviolet light emitting diode package for emitting ultraviolet light is disclosed. The ultraviolet light emitting diode package comprises an LED chip emitting light with a peak wavelength of 350 nm or less, and a protective member provided so that surroundings of the LED chip is covered to protect the LED chip, the protective member having a non-yellowing property to energy from the LED chip.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: November 5, 2013
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Jeong Suk Bae, Jae Jo Kim, Do Hyung Kim, Dae Sung Kal
  • Patent number: 8564134
    Abstract: The present invention provides a method of manufacturing a gallium nitride (GaN) substrate on a heterogeneous substrate at low cost while realizing performance improvement and long operational lifespan of semiconductor devices, such as LEDs or laser diodes, which are manufactured using the GaN substrate. The semiconductor substrate includes a substrate, a first semiconductor layer arranged on the substrate, a mask arranged on a first region of the first semiconductor layer, a metallic material layer arranged on the first semiconductor layer and the mask, the metallic material layer being arranged in a direction intersecting the mask, a second semiconductor layer arranged on the first semiconductor layer and the metallic material layer, and a cavity in the first semiconductor layer and arranged under the metallic material layer.
    Type: Grant
    Filed: September 3, 2010
    Date of Patent: October 22, 2013
    Assignee: Seoul Opto Device Co., Ltd.
    Inventor: Shiro Sakai
  • Patent number: 8552455
    Abstract: Provided is a semiconductor light-emitting diode including a semiconductor layer having a light-emitting structure; and an ohmic electrode incorporating a nanodot layer, a contact layer, a diffusion-preventing layer and a capping layer on the semiconductor layer. The nanodot layer is formed on the N-polar surface of the semiconductor layer and is formed from a substance comprising at least one of Ag, Al and Au. Also provided is a production method therefor. In the ohmic electrode which has the multi-layer structure comprising the nanodot layer/contact layer/diffusion-preventing layer/capping layer in the semiconductor light-emitting diode of this type, the nanodot layer constitutes the N-polar surface of a nitride semiconductor and improves the charge-injection characteristics such that outstanding ohmic characteristics can be obtained.
    Type: Grant
    Filed: September 7, 2010
    Date of Patent: October 8, 2013
    Assignees: Seoul Opto Device Co., Ltd., Postech Academy-Industry Foundation
    Inventors: Jong Lam Lee, Yang Hee Song, Jun Ho Son, Buem Joon Kim
  • Publication number: 20130256630
    Abstract: Disclosed herein is an ultraviolet (UV) light emitting device. The light emitting device includes an n-type contact layer including a GaN layer; a p-type contact layer including a GaN layer; and an active layer of a multi-quantum well structure disposed between the n-type contact layer and the p-type contact layer, the active area configured to emit near ultraviolet light at wavelengths of 365 nm to 309 nm.
    Type: Application
    Filed: March 29, 2013
    Publication date: October 3, 2013
    Applicant: Seoul Opto Device Co., Ltd.
    Inventors: Chang Suk HAN, Hwa Mok KIM, Hyo Shik CHOI, Mi So KO, A Ram Cha LEE
  • Patent number: 8546819
    Abstract: A method of fabricating a vertical light emitting diode including: growing a low doped first semiconductor layer on a sacrificial substrate; forming an aluminum layer on the low doped first semiconductor; forming an AAO layer having a large number of holes formed therein by anodizing the aluminum layer; etching and patterning the low doped first semiconductor layer using the aluminum layer as a shadow mask, thereby forming grooves; removing the aluminum layer remaining; sequentially forming a high doped first semiconductor layer, an active layer and a second semiconductor layer on the low doped first semiconductor layer with the grooves; forming a metal reflective layer and a conductive substrate on the second semiconductor layer; separating the sacrificial substrate; and forming an electrode pad on the other surface of the low doped first semiconductor layer, the electrode pad filled in the grooves and in ohmic contact with the high doped first semiconductor.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: October 1, 2013
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Yeo Jin Yoon, Chang Yeon Kim
  • Publication number: 20130248818
    Abstract: A method of fabricating a nonpolar gallium nitride-based semiconductor layer is provided. The method is a method of fabricating a nonpolar gallium nitride layer using metal organic chemical vapor deposition, and includes disposing a gallium nitride substrate with an m-plane growth surface within a chamber, raising a substrate temperature to a GaN growth temperature by heating the substrate, and growing a gallium nitride layer on the gallium nitride substrate by supplying a Ga source gas, an N source gas, and an ambient gas into the chamber at the growth temperature. The supplied ambient gas contains N2 and does not contain H2.
    Type: Application
    Filed: March 21, 2013
    Publication date: September 26, 2013
    Applicant: Seoul Opto Device Co., Ltd.
    Inventors: Seung Kyu CHOI, Chae Hon KIM, Jung Whan JUNG
  • Patent number: 8541806
    Abstract: The present invention relates to a light emitting diode including a substrate, a first conductive type semiconductor layer arranged on the substrate, a second conductive type semiconductor layer arranged on the first conductive type semiconductor layer, an active layer disposed between the first conductive type semiconductor layer and the second conductive type semiconductor layer, a first electrode pad electrically connected to the first conductive type semiconductor layer, a second electrode pad arranged on the first conductive type semiconductor layer, and an insulation layer disposed between the first conductive type semiconductor layer and the second electrode pad, the insulation layer insulating the second electrode pad from the first conductive type semiconductor layer. At least one upper extension may be electrically connected to the second electrode pad, the at least one upper extension being electrically connected to the second conductive type semiconductor layer.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: September 24, 2013
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Kyoung Wan Kim, Jeong Hee Yang, Yeo Jin Yoon
  • Patent number: 8536612
    Abstract: Disclosed is a light emitting device having a plurality of light emitting cells and a package having the same mounted thereon. The light emitting device includes a plurality of light emitting cells which are formed on a substrate and each of which has an N-type semiconductor layer and a P-type semiconductor layer located on a portion of the N-type semiconductor layer. The plurality of light emitting cells are bonded to a submount substrate. Accordingly, heat generated from the light emitting cells can be easily dissipated, so that a thermal load on the light emitting device can be reduced. Meanwhile, since the plurality of light emitting cells are electrically connected using connection electrodes or electrode layers formed on the submount substrate, it is possible to provide light emitting cell arrays connected to each other in series.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: September 17, 2013
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Chung Hoon Lee, Lacroix Yves, Hyung Soo Yoon, Young Ju Lee
  • Publication number: 20130234173
    Abstract: The present invention relates to a light emitting device. The light emitting device comprises a substrate, an N-type semiconductor layer formed on the substrate, and a P-type semiconductor layer formed on the N-type semiconductor layer, wherein a side surface including the N-type or P-type semiconductor layer has a slope of 20 to 80° from a horizontal plane. Further, a light emitting device comprises a substrate formed with a plurality of light emitting cells each including an N-type semiconductor layer and a P-type semiconductor layer formed on the N-type semiconductor layer, wherein the N-type semiconductor layer of one light emitting cell and the P-type semiconductor layer of another adjacent light emitting cell are connected to each other, and a side surface including at least the P-type semiconductor layer of the light emitting cell has a slope of 20 to 80° from a horizontal plane.
    Type: Application
    Filed: April 12, 2013
    Publication date: September 12, 2013
    Applicant: Seoul Opto Device Co., Ltd.
    Inventors: Jong Lam LEE, Jae Ho LEE, Yeo Jin YOON, Eu Jin HWANG, Dae Won KIM
  • Publication number: 20130237037
    Abstract: Embodiments of the invention provide a crystalline aluminum carbide thin film, a semiconductor substrate having the crystalline aluminum carbide thin film formed thereon, and a method of fabricating the same. Further, the method of fabricating the AlC thin film includes supplying a carbon containing gas and an aluminum containing gas to a furnace, to growing AlC crystals on a substrate.
    Type: Application
    Filed: April 26, 2013
    Publication date: September 12, 2013
    Applicant: Seoul Opto Device Co., Ltd.
    Inventor: Shiro SAKAI
  • Publication number: 20130234192
    Abstract: Disclosed herein is an LED chip including electrode pads. The LED chip includes a semiconductor stack including a first conductive type semiconductor layer, a second conductive type semiconductor layer on the first conductive type semiconductor layer, and an active layer interposed between the first conductive type semiconductor layer and the second conductive type semiconductor layer; a first electrode pad located on the second conductive type semiconductor layer opposite to the first conductive type semiconductor layer; a first electrode extension extending from the first electrode pad and connected to the first conductive type semiconductor layer; a second electrode pad electrically connected to the second conductive type semiconductor layer; and an insulation layer interposed between the first electrode pad and the second conductive type semiconductor layer. The LED chip includes the first electrode pad on the second conductive type semiconductor layer, thereby increasing a light emitting area.
    Type: Application
    Filed: February 28, 2011
    Publication date: September 12, 2013
    Applicant: SEOUL OPTO DEVICE CO., LTD.
    Inventors: Ye Seul Kim, Kyoung Wan Kim, Yeo Jin Yoon, Sang Hyun Oh, Keum Ju Lee, Jin Woong Lee, Da Yeon Jeong, Sang Won Woo
  • Publication number: 20130228793
    Abstract: The present invention relates to a light emitting device having a plurality of non-polar light emitting cells and a method of fabricating the same. Nitride semiconductor layers are disposed on a Gallium Nitride substrate having an upper surface. The upper surface is a non-polar or semi-polar crystal and forms an intersection angle with respect to a c-plane. The nitride semiconductor layers may be patterned to form light emitting cells separated from one another. When patterning the light emitting cells, the substrate may be partially removed in separation regions between the light emitting cells to form recess regions. The recess regions are filled with an insulating layer, and the substrate is at least partially removed by using the insulating layer.
    Type: Application
    Filed: April 18, 2013
    Publication date: September 5, 2013
    Applicant: Seoul Opto Device Co., Ltd.
    Inventors: Kwang Choong KIM, Won Cheol Seo, Dae Won Kim, Dae Sung Kal, Kyung Hee Ye
  • Patent number: 8525220
    Abstract: Disclosed is a light emitting diode (LED) with an improved structure. The LED comprises an N-type semiconductor layer, a P-type semiconductor layer and an active layer interposed between the N-type and P-type semiconductor layers. The P-type compound semiconductor layer has a laminated structure comprising a P-type clad layer positioned on the active layer, a hole injection layer positioned on the P-type clad layer, and a P-type contact layer positioned on the hole injection layer. Accordingly, holes are more smoothly injected into the active layer from the P-type semiconductor layer, thereby improving the recombination rate of electrons and holes.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: September 3, 2013
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Sang Joon Lee, Dae Sung Kal, Dae Won Kim
  • Patent number: 8525212
    Abstract: An exemplary embodiment of the present invention discloses a light emitting diode including a lower contact layer having a first edge, a second edge opposite to the first edge, a third edge connecting the first edge to the second edge, and a fourth edge opposite to the third edge, a mesa structure arranged on the lower contact layer, the mesa structure including an active layer and an upper contact layer, a first electrode pad arranged on the lower contact layer, a second electrode pad arranged on the mesa structure, a first lower extension and a second lower extension extending from the first electrode pad towards the second edge, distal ends of the first lower extension and the second lower extension being farther away from each other than front ends thereof contacting the first electrode pad, and a first upper extension, a second upper extension, and a third upper extension extending from the second electrode pad.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: September 3, 2013
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Kyoung Wan Kim, Ye Seul Kim, Jeong Hee Yang, Jae Moo Kim
  • Publication number: 20130221372
    Abstract: The present invention is directed to a light emitting diode (LED) assembly and a method for fabricating the same. According to the present invention, there is provided an LED assembly comprising an LED comprising at least an N-type semiconductor layer and a P-type semiconductor layer; and bumps provided on the LED and electrically connected to the semiconductor layers, wherein the bump comprises a first region made of a gold (Au) compound including tin (Sn) and a second region made of gold.
    Type: Application
    Filed: December 9, 2010
    Publication date: August 29, 2013
    Applicant: SEOUL OPTO DEVICE CO., LTD.
    Inventors: Kyu Ho Lee, Dae Woong Suh, Jae Ryang Choi, Chang Hoon Kim
  • Publication number: 20130221324
    Abstract: Embodiments of the invention provide a semiconductor light emitting diode having an ohmic electrode structure, and a method of manufacturing the same. The semiconductor light emitting diode includes a light emitting structure having an upper surface constituting an N-face; and an ohmic electrode structure located on the light emitting structure. Here, the ohmic electrode structure includes a lower diffusion preventing layer, a contact layer, an upper diffusion preventing layer, and an Al protective layer from the N-face of the light emitting structure.
    Type: Application
    Filed: August 9, 2011
    Publication date: August 29, 2013
    Applicants: POSTECH ACADEMY-INDUSTRY FOUNDATION, SEOUL OPTO DEVICE CO., LTD.
    Inventors: Jong Lam Lee, Yang Hee Song