Patents Assigned to TC1 LLC
  • Patent number: 11890472
    Abstract: Devices, systems and methods are provided for targeted treatment of a variety of conditions, particularly conditions that are associated with or influenced by the nervous system, such as pain. Targeted treatment of such conditions is provided with minimal deleterious side effects, such as undesired motor responses or undesired stimulation of unaffected body regions. This is achieved by directly neuromodulating a target anatomy associated with the condition while minimizing or excluding undesired neuromodulation of other anatomies.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: February 6, 2024
    Assignee: TC1 LLC
    Inventors: Eyad Kishawi, Mir A. Imran, Brian J. Mossop, Jeffery M. Kramer, Richard W. O'Connor
  • Patent number: 11890082
    Abstract: A system and method are provided for determining a pressure associated with a lumen of a body. A wireless sensor is positioned in the lumen of the body. The sensor comprises an LC resonant circuit having a resonant frequency configured to vary in response to changes in pressure in the lumen. One or more sensor calibration parameters are stored at an external base unit. The external based unit generates and transmits an energizing signal. A ring down response is received from the wireless sensor. The system and method determine the resonant frequency of the LC resonant circuit from the ring down response and calculate the pressure in the lumen from the resonant frequency of the LC resonant circuit utilizing the one or more sensor calibration parameters associated with the LC resonant circuit.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: February 6, 2024
    Assignee: TC1 LLC
    Inventors: Florent Cros, David O'Brien, Michael Fonseca, Matthew Abercrombie, Jin Woo Park, Angad Singh
  • Patent number: 11883641
    Abstract: The invention generally relates to improved medical blood pump devices, systems, and methods. For example, blood pumps may be provided that include a housing defining a blood flow path between an inlet and an outlet. A rotor may be positioned in the blood flow path. A motor stator may be driven to rotate the rotor to provide the blood flow through the pump. Axial and/or tilt stabilization components may be provided to increase an axial and/or tilt stabilization of the rotor within the blood flow path. In some embodiments, biasing forces are provided that urge the rotor toward a bearing component. The biasing force may be provided by adjusting drive signals of the motor stator. Additionally, or alternatively, one or more magnets (e.g., permanent/stator magnets) may be provided to bias the rotor in the upstream and/or downstream direction (e.g., toward a bearing (chamfer, step, conical), or the like).
    Type: Grant
    Filed: November 8, 2022
    Date of Patent: January 30, 2024
    Assignee: TC1 LLC
    Inventors: Onur Dur, Kevin Bourque
  • Patent number: 11872384
    Abstract: Methods of operating a blood pump having a magnetically levitated impeller. A method of operating a blood pump includes controlling supply of drive currents to drive coils of the blood pump to magnetically rotate an impeller around an impeller axis of rotation within a blood flow channel of a blood pump. Supply of a bearing current to a levitation coil of the blood pump is controlled to magnetically levitate the impeller in a direction transverse to the impeller axis of rotation so as to minimize power consumption of the blood pump during operation of the blood pump.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: January 16, 2024
    Assignee: TC1 LLC
    Inventor: Christopher J. Cotter
  • Publication number: 20240001104
    Abstract: A rotary machine is provided which may include a rotor and a stator within a housing. The stator may be for generating a rotating magnetic field for applying a torque to the rotor. A commutator circuit may provide a plurality of phase voltages to the stator, and a controller may adjust the plurality of phase voltages provided by the commutator circuit to modify an attractive force of the stator on the rotor to move the rotor in an axial direction.
    Type: Application
    Filed: June 30, 2023
    Publication date: January 4, 2024
    Applicant: TC1 LLC
    Inventors: Shunzhou Yu, Alexander Medvedev, Ren You
  • Publication number: 20230414923
    Abstract: A blood pump system is implantable in a patient for ventricular support. A pumping chamber has an inlet for receiving blood from a ventricle of the patient. An impeller is received in the pumping chamber. A motor is coupled to the impeller for driving rotation of the impeller. A motor controller is provided for tracking systolic and diastolic phases of a cardiac cycle of the patient and supplying a variable voltage signal to the motor in a variable speed mode to produce a variable impeller speed linked to the cardiac cycle. The impeller speed comprises a ramping up to an elevated speed during the diastolic phase in order to reduce a load on the ventricle at the beginning of the systolic phase.
    Type: Application
    Filed: June 30, 2023
    Publication date: December 28, 2023
    Applicant: TC1 LLC
    Inventors: Alexander Medvedev, Masamichi Yanai
  • Publication number: 20230414120
    Abstract: A method for synchronizing operation of a heart assist pump device to a patient's cardiac cycle includes obtaining a signal from a motor of a heart assist pump device and filtering the signal to remove noise. The method also includes determining a speed synchronization start point at which time the motor of the heart assist pump device will begin a change in speed of operation based on the filtered signal. The method further includes modulating a speed of the motor of the heart assist pump device to a target speed at the speed synchronization start point, thereby synchronizing the change in speed of operation with a patient's cardiac cycle.
    Type: Application
    Filed: June 22, 2023
    Publication date: December 28, 2023
    Applicant: TC1 LLC
    Inventors: Alexander Medvedev, Shunzhou Yu, Ren You
  • Patent number: 11850414
    Abstract: A fluid handling system includes a console configured to connect with a first electrical interface that is configured to connect to a plurality of components of the fluid handling system, the console including a second electrical interface configured to connect with the first electrical interface, a display, and one or more hardware processors. A control system includes the one or more hardware processors and a non-transitory memory storing instructions that, when executed, cause the control system to: detect an electrical signal from a first component of the plurality of components of the fluid handling system responsive to a caretaker performing a first instruction; determine a system state of the fluid handling system based at least in part on the electrical signal from the first component; compare the system state with a predetermined state condition corresponding to said first instruction; and output an indication on the display of the system state.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: December 26, 2023
    Assignee: TC1 LLC
    Inventors: Alan L. Schenck, Paul F. Muller, Keif M. Fitzgerald
  • Patent number: 11850413
    Abstract: An impeller for a pump is disclosed herein. The impeller can include a hub having a fixed end and a free end. The impeller can also have a plurality of blades supported by the hub. Each blade can have a fixed end coupled to the hub and a free end. The impeller can have a stored configuration and a deployed configuration, the blades in the deployed configuration extending away from the hub, and the blades in the stored configuration being compressed against the hub.
    Type: Grant
    Filed: May 11, 2022
    Date of Patent: December 26, 2023
    Assignee: TC1 LLC
    Inventors: Zijing Zeng, Phyllis Yuen, Michael R. Butler
  • Publication number: 20230404421
    Abstract: The invention generally relates to heart pump systems. In some embodiments, a pressure sensor is provided with a heart pump, either at the inflow or the outflow of the blood pump. The heart pump may further include a flow estimator based on a rotor drive current signal delivered to the rotor. Based on the rotor drive current signal, a differential pressure across the pump may be calculated. The differential pressure in combination with the pressure measurements from the pressure sensor may be used to calculate pressure on the opposite side of the pump from the pressure sensor. In some embodiments, the pressure sensor is located at the outflow of the pump and the pump is coupled with the left ventricle. The differential pressure and pressure measurement may be used to calculate a left ventricular pressure waveform of the patient. With such a measurement, other physiological parameters may be derived.
    Type: Application
    Filed: September 1, 2023
    Publication date: December 21, 2023
    Applicant: TC1 LLC
    Inventors: Daniel I. Harjes, Kathryn B. Frederick, Eric Lee
  • Patent number: 11837364
    Abstract: Systems and methods for performing personalized cardiovascular analyses are provided. A method includes building, using a modeling and simulation computing device, a patient-specific model, storing, using the modeling and simulation computing device, the patient-specific model in a database, receiving, at the modeling and simulation computing device, remote monitoring data from at least one remote monitoring data source, and receiving, at the modeling and simulation computing device, clinical data from at least one clinical data source. The method further includes updating, using the modeling and simulation computing device, the patient-specific model using the remote monitoring data and the clinical data, performing, using the modeling and simulation computing device, at least one simulation on the updated patient-specific model, and outputting, from the modeling and simulation computing device, at least one output based on the at least one simulation.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: December 5, 2023
    Assignee: TC1 LLC
    Inventors: Eric Lee, Daniel I. Harjes
  • Patent number: 11833342
    Abstract: A catheter pump is disclosed herein. The catheter pump can include a catheter assembly that comprises a drive shaft and an impeller coupled to a distal end of the drive shaft. A driven assembly can be coupled to a proximal end of the drive shaft within a driven assembly housing. The catheter pump can also include a drive system that comprises a motor and a drive magnet coupled to an output shaft of the motor. The drive system can include a drive assembly housing having at least one magnet therein. Further, a securement device can be configured to prevent disengagement of the driven assembly housing from the drive assembly housing during operation of the pump.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: December 5, 2023
    Assignee: TC1 LLC
    Inventors: Adam R. Tanner, Richard L Keenan, Doug M. Messner, Michael R. Butler
  • Patent number: 11824381
    Abstract: Systems and related methods for supplying power to an implantable blood pump are provided. A system includes a base module and a plurality of energy storage devices. A first energy storage device is operatively coupled to the base module. A second energy storage device is operatively coupled to the first modular energy storage device. The energy storage devices are mechanically coupled in series, electrically coupled in parallel, and configured to provide redundant sources of power to drive an implantable blood pump.
    Type: Grant
    Filed: October 27, 2021
    Date of Patent: November 21, 2023
    Assignee: TC1 LLC
    Inventors: Kevin Conyers, Jesse Gage, Carine Hoarau, Jaime Arturo Romero, Joseph C. Stark, III
  • Publication number: 20230355953
    Abstract: Materials and methods related to blood pump systems are described. These can be used in patients to, for example, monitor arterial pressure, measure blood flow, maintain left ventricular pressure within a particular range, avoid left ventricular collapse, prevent fusion of the aortic valve in a subject having a blood pump, and provide a means to wean a patient from a blood pump.
    Type: Application
    Filed: April 13, 2023
    Publication date: November 9, 2023
    Applicant: TC1 LLC
    Inventor: Victor Poirier
  • Patent number: 11806517
    Abstract: A circulation assist system measures impeller displacement for use in estimating a blood flow rate related parameter. A circulation assist system includes a blood pump and a controller. The blood pump includes an impeller magnetically supported within a blood flow channel. The blood pump includes one or more sensors configured to generate output indicative of displacement of the impeller along the blood flow channel induced by a blood-flow induced thrust load applied to the impeller. The controller is configured to process the output generated by the one or more sensors to determine the displacement of the impeller along the blood flow channel. The controller is configured to process the determined displacement of the impeller to estimate at least one of the thrust load applied to the impeller, a pressure differential of the blood impelled through the blood flow channel, and a flow rate of blood pumped by the blood pump.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: November 7, 2023
    Assignee: TC1 LLC
    Inventor: Ethan Falk Petersen
  • Patent number: 11801379
    Abstract: Connectors and related methods for fluidly coupling a blood pump with an aorta facilitate implantation of the blood pump. A method of fluidly coupling a blood pump with an aorta includes positioning a connector device defining a passageway extending between a proximal opening and a distal opening. The connector device includes a support member surrounding the distal opening. The support member is interfaced with a wall of the aorta so that the distal opening is at a desired location of an inlet opening in the aorta. The support member is attached to the aorta around the distal opening so as to form a fluid seal and stabilize the connector device. A slit is incised in the wall of the aorta to form the inlet opening in the aorta. A proximal opening of the tubular connector is fluidly coupled with an outflow graft tube of the blood pump.
    Type: Grant
    Filed: April 29, 2021
    Date of Patent: October 31, 2023
    Assignee: TC1 LLC
    Inventor: Sarah Cohen
  • Patent number: 11801387
    Abstract: A system for omni-orientational wireless energy transfer is described. A transmitter unit has a transmitter resonator with a coil that is configured to be coupled to a power supply to wirelessly transmit power to a receiver unit. A receiver unit has a receiver resonator with a coil coupled to a device load. At least one of the resonators is a non-planar resonator that spans a non-degenerate two-dimensional surface having at least one concave portion.
    Type: Grant
    Filed: May 27, 2020
    Date of Patent: October 31, 2023
    Assignee: TC1 LLC
    Inventors: Joseph Stark, Edward Burke
  • Patent number: 11786720
    Abstract: A catheter pump assembly is provided that includes an elongate body, an elongate flexible shaft disposed in the elongate body, and an impeller coupled with the distal end of the elongate flexible shaft. The drive system includes a drive component, a motor and a tension member. The tension member is coupled with the motor and the drive component and to cause the drive component to rotate, and thereby to cause the impeller to rotate.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: October 17, 2023
    Assignee: TC1 LLC
    Inventor: Paul F. Muller
  • Patent number: 11779234
    Abstract: The invention generally relates to heart pump systems. In some embodiments, a pressure sensor is provided with a heart pump, either at the inflow or the outflow of the blood pump. The heart pump may further include a flow estimator based on a rotor drive current signal delivered to the rotor. Based on the rotor drive current signal, a differential pressure across the pump may be calculated. The differential pressure in combination with the pressure measurements from the pressure sensor may be used to calculate pressure on the opposite side of the pump from the pressure sensor. In some embodiments, the pressure sensor is located at the outflow of the pump and the pump is coupled with the left ventricle. The differential pressure and pressure measurement may be used to calculate a left ventricular pressure waveform of the patient. With such a measurement, other physiological parameters may be derived.
    Type: Grant
    Filed: September 22, 2020
    Date of Patent: October 10, 2023
    Assignee: TC1 LLC
    Inventors: Daniel I. Harjes, Kathryn B. Frederick, Eric Lee
  • Patent number: 11781551
    Abstract: A blood pump system includes a pump housing and an impeller for rotating in a pump chamber within the housing. The impeller has a first side and a second side opposite the first side. The system includes a stator having drive coils for applying a torque to the impeller and at least one bearing mechanism for suspending the impeller within the pump chamber. The system includes a position control mechanism for moving the impeller in an axial direction within the pump chamber to adjust a size of a first gap and a size of a second gap, thereby controlling a washout rate at each of the first gap and the second gap. The first gap is defined by a distance between the first side and the housing and the second gap is defined by a distance between the second side and the pump housing.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: October 10, 2023
    Assignee: TC1 LLC
    Inventors: Masamichi Yanai, Shunzhou Yu, Tao Zhang