Patents Assigned to TC1 LLC
  • Patent number: 11759612
    Abstract: A catheter pump is disclosed. The catheter pump can include an impeller and a catheter body having a lumen in which waste fluid flows proximally therethrough during operation of the catheter pump. The catheter pump can also include a drive shaft disposed inside the catheter body. A motor assembly can include a chamber. The motor assembly can include a rotor disposed in the at least a portion of the chamber, the rotor mechanically coupled with a proximal portion of the drive shaft such that rotation of the rotor causes the drive shaft to rotate, the rotor including a longitudinal rotor lumen therethrough. The motor assembly can also comprise a stator assembly disposed about the rotor. During operation of the catheter pump, the waste fluid flows from the lumen into the chamber such that at least a portion of the waste fluid flows proximally through the longitudinal rotor lumen.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: September 19, 2023
    Assignee: TC1 LLC
    Inventors: Adam R. Tanner, Paul F. Muller, Alan Schenck, Michael R. Butler, Todd Jenkins
  • Patent number: 11724097
    Abstract: A rotary machine is provided which may include a rotor and a stator within a housing. The stator may be for generating a rotating magnetic field for applying a torque to the rotor. A commutator circuit may provide a plurality of phase voltages to the stator, and a controller may adjust the plurality of phase voltages provided by the commutator circuit to modify an attractive force of the stator on the rotor to move the rotor in an axial direction.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: August 15, 2023
    Assignee: TC1 LLC
    Inventors: Shunzhou Yu, Alexander Medvedev, Ren You
  • Patent number: 11724094
    Abstract: A blood pump system is implantable in a patient for ventricular support. A pumping chamber has an inlet for receiving blood from a ventricle of the patient. An impeller is received in the pumping chamber. A motor is coupled to the impeller for driving rotation of the impeller. A motor controller is provided for tracking systolic and diastolic phases of a cardiac cycle of the patient and supplying a variable voltage signal to the motor in a variable speed mode to produce a variable impeller speed linked to the cardiac cycle. The impeller speed comprises a ramping up to an elevated speed during the diastolic phase in order to reduce a load on the ventricle at the beginning of the systolic phase.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: August 15, 2023
    Assignee: TC1 LLC
    Inventors: Alexander Medvedev, Masamichi Yanai
  • Patent number: 11712167
    Abstract: A method for synchronizing operation of a heart assist pump device to a patient's cardiac cycle includes obtaining a signal from a motor of a heart assist pump device and filtering the signal to remove noise. The method also includes determining a speed synchronization start point at which time the motor of the heart assist pump device will begin a change in speed of operation based on the filtered signal. The method further includes modulating a speed of the motor of the heart assist pump device to a target speed at the speed synchronization start point, thereby synchronizing the change in speed of operation with a patient's cardiac cycle.
    Type: Grant
    Filed: October 28, 2020
    Date of Patent: August 1, 2023
    Assignee: TC1 LLC
    Inventors: Alexander Medvedev, Shunzhou Yu, Ren You
  • Patent number: 11708833
    Abstract: An impeller includes a hub and a blade supported by the hub. The impeller has a stored configuration in which the blade is compressed so that its distal end moves towards the hub, and a deployed configuration in which the blade extends away from the hub. The impeller may be part of a pump for pumping fluids, such as blood, and may include a cannula having a proximal portion with a fixed diameter, and a distal portion with an expandable diameter. The impeller may reside in the expandable portion of the cannula. The cannula may have a compressed diameter which allows it to be inserted percutaneously into a patient. Once at a desired location, the expandable portion of the cannula may be expanded and the impeller expanded to the deployed configuration. A flexible drive shaft may extend through the cannula for rotationally driving the impeller within the patient.
    Type: Grant
    Filed: October 30, 2020
    Date of Patent: July 25, 2023
    Assignees: The Penn State Research Foundation, TC1 LLC
    Inventors: Mark W. McBride, Thomas M. Mallison, Gregory P. Dillon, Robert L. Campbell, David A. Boger, Stephen A. Hambric, Robert F. Kunz, James P. Runt, Justin M. Walsh, Boris Leschinsky
  • Patent number: 11690606
    Abstract: A catheter system includes a catheter including an elongate body having an expandable medical device coupled with a distal end thereof, and an introducer sheath assembly disposed over a proximal section of the catheter. The introducer sheath assembly includes an introducer sheath disposed over the catheter to form a gap therebetween, and a tubular plug. The introducer sheath includes an elongate body extending from a proximal end to a distal end and defining a lumen therein. The tubular plug extends through the lumen and includes an elongate body extending from a proximal end to a distal end that protrudes from the introducer sheath distal end. The plug is disposed between the catheter and the introducer sheath to occlude the gap. The plug is releasably fixed relative to the introducer sheath such that the plug is removable from the lumen to allow the expandable medical device to pass therethrough.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: July 4, 2023
    Assignee: TC1 LLC
    Inventors: Paul Muller, Keif Fitzgerald, Ted Su, Michael Butler
  • Patent number: 11684769
    Abstract: Disclosed herein is an implantable blood pump assembly that includes a housing defining an inlet, an outlet, a flow path extending from the inlet to the outlet, and an internal compartment separated from the flow path. The blood pump assembly further includes a rotor positioned within the flow path and operable to pump blood from the inlet to the outlet, a stator positioned within the internal compartment and operable to drive the rotor, and an inlet conduit connected to the housing inlet and having a downstream end that has a reduced cross-sectional area that produces a localized region of high velocity blood flow. The blood pump assembly further includes at least one pressure sensor positioned between the inlet and the outlet and configured to detect a pressure of blood flowing through the flow path. The pressure sensor is located adjacent the downstream end of the inlet conduit.
    Type: Grant
    Filed: December 19, 2019
    Date of Patent: June 27, 2023
    Assignee: TC1 LLC
    Inventors: Daniel I. Harjes, Eric Lee, Jin Woo Park
  • Patent number: 11689057
    Abstract: Systems, devices, and methods for improving wireless power transmission are disclosed herein. A method of powering an implantable ventricular assist device with an external charging device includes receiving a signal indicative of a change in a property of a deformable coil of the resonant circuit. A performance property of the deformable coil is determined based on the signal. An adjustment to a tuning of the resonant circuit is identified based on the performance property of the deformable coil. The resonant circuit is tuned according to the adjustment to the tuning of the resonant circuit. The resonant circuit is driven to transmit power to a secondary coil electrically coupled with the implantable ventricular assist device to power the ventricular assist device.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: June 27, 2023
    Assignee: TC1 LLC
    Inventor: John Freddy Hansen
  • Patent number: 11684276
    Abstract: An implantable wireless sensor is provided for determining a pressure of a lumen in a body. The sensor comprises a sensor body comprising a plurality of substrates, at least a portion of the substrates comprising a first dielectric material. An LC resonant circuit is contained with the sensor body. A capacitance of the LC resonant circuit is configured to vary in response to changes in pressure in the lumen. A first anchoring element is coupled to a proximal end of the sensor body and a second anchoring element is coupled to a distal end of the sensor body. The first and second anchoring elements are configured to lodge the sensor body within the lumen. A second dielectric material, different than the first dielectric material, is provided over at least a portion of at least one of the plurality of substrates.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: June 27, 2023
    Assignee: TC1, LLC
    Inventors: Florent Cros, David O'Brien, Michael Fonseca, Matthew Abercrombie, Jin Woo Park, Angad Singh
  • Patent number: 11682924
    Abstract: A resonator for use in a wireless power transfer system is provided. The resonator includes a core including a front surface, a back surface, and an annular sidewall extending between the front surface and the back surface, wherein an annular groove is defined in the front surface and surrounds a post, and wherein a cavity is defined in the back surface, the post and the cavity aligned with a longitudinal axis of the core. The resonator further includes a coil element disposed within the annular groove.
    Type: Grant
    Filed: June 8, 2021
    Date of Patent: June 20, 2023
    Assignee: TC1 LLC
    Inventors: John Freddy Hansen, Russell Anderson, Daniel I. Harjes, Alexander Baval, Jeffrey Iudice
  • Patent number: 11679234
    Abstract: Disclosed herein is a catheter pump that includes an expandable cannula and an impeller system. The expandable cannula defines a blood flow channel and includes an impeller blade zone, an inlet zone, and an outlet zone. The catheter pump further includes an impeller system including an impeller body, the impeller system movable relative to the expandable cannula along a longitudinal axis of the catheter pump. The catheter pump is selectively transitionable between a separated configuration in which the impeller body is axially spaced from the expandable cannula along the longitudinal axis, and an operational configuration in which the impeller body is positioned within the impeller blade zone of the expandable cannula.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: June 20, 2023
    Assignee: TC1 LLC
    Inventors: Alexander King, David Panus, Tracee Eidenschink, John Pocrnich, Kevin Griffin
  • Patent number: 11660441
    Abstract: A catheter pump is provided that includes a rotatable impeller and an elongate cannula. The elongate cannula has a mesh that has a plurality of circumferential members disposed about the impeller. The elongate cannula has a plurality of axial connector extending between a proximal side of a distal circumferential member and a distal side of a proximal circumferential member. The circumferential members are radially self-expandable. The cannula is configured to minimize fracture within at least in the distal zone of the mesh as the elongated cannula moves into a sheathing device.
    Type: Grant
    Filed: October 31, 2020
    Date of Patent: May 30, 2023
    Assignee: TC1 LLC
    Inventors: Keif M. Fitzgerald, Richard L. Keenan, William J. Harrison
  • Patent number: 11654276
    Abstract: A catheter pump is provided that includes a rotatable impeller and an elongate cannula. The elongate cannula has a mesh that has a plurality of circumferential members disposed about the impeller. The elongate cannula has a plurality of axial connector extending between a proximal side of a distal circumferential member and a distal side of a proximal circumferential member. The circumferential members are radially self-expandable. The cannula is configured to minimize fracture within at least in the distal zone of the mesh as the elongated cannula moves into a sheathing device.
    Type: Grant
    Filed: October 31, 2020
    Date of Patent: May 23, 2023
    Assignee: TC1 LLC
    Inventors: Keif M. Fitzgerald, Richard L. Keenan, William J. Harrison
  • Patent number: 11648386
    Abstract: Materials and methods related to blood pump systems are described. These can be used in patients to, for example, monitor arterial pressure, measure blood flow, maintain left ventricular pressure within a particular range, avoid left ventricular collapse, prevent fusion of the aortic valve in a subject having a blood pump, and provide a means to wean a patient from a blood pump.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: May 16, 2023
    Assignee: TC1 LLC
    Inventor: Victor Poirier
  • Patent number: 11639722
    Abstract: A ventricular assist device is disclosed. The ventricular assist device may include a centrifugal pump and a controller. The controller may be configured to cause the centrifugal pump to operate at a first speed above a predetermined flow rate. The controller may also be configured to cause the centrifugal pump to operate at a second speed below the predetermined flow rate, wherein the predetermined flowrate is indicative of a crossover point between systole and diastole phases of a person's cardiac cycle.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: May 2, 2023
    Assignee: TC1 LLC
    Inventors: Alexander Medvedev, Muhammad Sami
  • Patent number: 11638813
    Abstract: Disclosed herein is an implantable blood pump assembly that includes a housing defining an inlet, an outlet, and a flow path extending from the inlet to the outlet, a rotor positioned within the flow path, a stator positioned within the housing and operable to drive the rotor, and an outflow cannula. The outflow cannula includes a coupler assembly configured for removable mechanical connection to the outlet coupler, and includes a first component of an anti-rotation mechanism and a first component of an axial lock. The housing includes an outlet coupler that includes a second component of the anti-rotation mechanism and a second component of the axial lock. The first and second components of the anti-rotation mechanism are positioned to engage one another prior to the first and second components of the axial lock during insertion of the outflow cannula into the housing outlet.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: May 2, 2023
    Assignee: TC1 LLC
    Inventor: Dustin Seth West
  • Patent number: 11633586
    Abstract: A catheter pump is disclosed. The catheter pump can include an impeller and a catheter body having a lumen therethrough. The catheter pump can also include a drive shaft disposed inside the catheter body. A motor assembly can include a chamber. The motor assembly can include a rotor disposed in the at least a portion of the chamber, the rotor mechanically coupled with a proximal portion of the drive shaft such that rotation of the rotor causes the drive shaft to rotate. The motor assembly can also comprise a stator assembly disposed about the rotor. The motor assembly can also include a heat exchanger disposed about the stator assembly, the heat exchanger may be configured to direct heat radially outward away from the stator assembly, the rotor, and the chamber.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: April 25, 2023
    Assignee: TC1 LLC
    Inventors: Adam R. Tanner, Michael R. Butler, Todd Jenkins
  • Publication number: 20230096753
    Abstract: The present invention is generally related to methods and systems for preventing onset or worsening of RHF in patients with implanted ventricular assist devices. More particularly, the present invention relates to identifying patients at risk for RHF following implantation of a ventricular assist device based on pulmonary artery pressure measurement and/or trends and adjusting a pump operating parameter to prevent or reduce the onset or worsening of RHF in such patients, improve patient outcomes, or reduce mortality risks associated with VAD implantation. In particular, a pump operating parameter may be adjusted to reduce or minimize particularly high pressure loads on a patient’s heart or amount of time the patient is exposed to such high pressure loads following implantation.
    Type: Application
    Filed: October 19, 2022
    Publication date: March 30, 2023
    Applicant: TC1 LLC
    Inventors: Rahul Agarwal, Allison Connolly, Yelena Nabutovsky, Julie Prillinger
  • Publication number: 20230066175
    Abstract: The invention generally relates to improved medical blood pump devices, systems, and methods. For example, blood pumps may be provided that include a housing defining a blood flow path between an inlet and an outlet. A rotor may be positioned in the blood flow path. A motor stator may be driven to rotate the rotor to provide the blood flow through the pump. Axial and/or tilt stabilization components may be provided to increase an axial and/or tilt stabilization of the rotor within the blood flow path. In some embodiments, biasing forces are provided that urge the rotor toward a bearing component. The biasing force may be provided by adjusting drive signals of the motor stator. Additionally, or alternatively, one or more magnets (e.g., permanent/stator magnets) may be provided to bias the rotor in the upstream and/or downstream direction (e.g., toward a bearing (chamfer, step, conical), or the like).
    Type: Application
    Filed: November 8, 2022
    Publication date: March 2, 2023
    Applicant: TC1 LLC
    Inventors: Onur Dur, Kevin Bourque
  • Patent number: 11590336
    Abstract: Systems and methods for evaluating blood behavior when flowing through an implantable medical device are provided. A flow loop includes the implantable medical device, and a blood reservoir configured to contain a volume of blood and to supply blood from the volume of blood to the implantable medical device. The flow loop further includes a plurality of tubing sections coupled in flow communication between the implantable medical device and the blood reservoir, the plurality of tubing sections including a least a first tubing section having a first diameter and a second tubing section having a second diameter, wherein the second diameter is smaller than the first diameter, and a flow diverter coupled in flow communication between the plurality of tubing sections and the blood reservoir, the flow diverter comprising an outlet that is configured to be positioned below a surface of the volume of blood.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: February 28, 2023
    Assignee: TC1 LLC
    Inventors: Dan Harjes, Balakrishnan Sivaraman