Patents Assigned to Teledyne Scientific & Imaging, LLC
  • Publication number: 20160223365
    Abstract: A moving platform roll sensor system comprises an ellipsometric detector capable of detecting a polarized beam within the detector's line-of-sight, and measuring the beam's polarization state, such that the polarization state indicates the rotational orientation of the moving platform with respect to a predefined coordinate system. The ellipsometric detector comprises a venetian blind component through which the polarized beam passes, arranged such that the intensity of the exiting beam varies with its incident angle with respect to the moving platform, a polarizing beamsplitter which splits the exiting beam into components having orthogonal circular polarizations, the relative intensities of which vary with the relative polarization vector of the beam, and first and second detectors which receive the first and second orthogonal circular components and generate respective outputs that vary with the intensities of their received components.
    Type: Application
    Filed: February 4, 2014
    Publication date: August 4, 2016
    Applicant: TELEDYNE SCIENTIFIC & IMAGING, LLC
    Inventors: Milind MAHAJAN, Bruce K. WINKER, Donald TABER, Brian GREGORY, Dong-Feng GU
  • Patent number: 9376807
    Abstract: A passive structural system includes a structural element which may be subjected to energy which gives rise to vibration in the element. At least one bi-stable sub-structure is coupled to the element. Each bi-stable sub-structure has two stable equilibrium states between which the sub-structure can physically transition when subjected to a sufficient amount of energy which gives rise to vibration in the element, with each bi-stable sub-structure arranged to dissipate at least a portion of the energy and thereby damp the vibration in the structural element when it transitions from one equilibrium state to the other. The passive structural system may also be intentionally mistuned such that when subjected to energy which gives rise to vibration, the vibration energy is substantially confined to localized regions within the system. The bi-stable structures are then located in the localized regions and arranged to dissipate the localized vibration energy.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: June 28, 2016
    Assignee: TELEDYNE SCIENTIFIC & IMAGING, LLC
    Inventors: Bing-Chung Chen, Kyle D. Gould, Ten-Luen Liao
  • Patent number: 9357151
    Abstract: A shared counter circuit for a column-parallel single-slope ADC includes an n-bit counter; n low-voltage (LV) drivers connected to receive respective counter output bits and to provide a logic high or logic low output signal which tracks the received bit, the voltage difference between the logic high and logic low output signals being less than Vdd; and a plurality of sets of regenerative latches powered by a supply voltage Vdd, each of which receives an output from a respective LV driver and latches and regenerates the received output as a rail-to-rail CMOS signal upon the occurrence of a trigger event. One typical trigger event occurs when a periodic ramp voltage exceeds an input voltage provided to the ADC which may originate, for example, from the columns of a photodetector array.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: May 31, 2016
    Assignee: TELEDYNE SCIENTIFIC & IMAGING, LLC
    Inventor: Mihail Milkov
  • Patent number: 9341697
    Abstract: An orientation tracking system for a moving platform includes a transmitter which generates an beam having a known polarization with respect to a predefined coordinate system. The moving platform includes an ellipsometric detector capable of detecting the polarized beam when within the line-of-sight of the transmitter, and measuring its polarization state. The polarization state indicates the rotational orientation of the moving platform with respect to the predefined coordinate system. The beam could also be used to convey guidance commands to the platform.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: May 17, 2016
    Assignee: TELEDYNE SCIENTIFIC & IMAGING, LLC
    Inventors: Milind Mahajan, Bruce K. Winker
  • Patent number: 9324900
    Abstract: A method of fabricating a superlattice structure requires that atoms of a first III-V semiconductor compound be introduced into a vacuum chamber such that the atoms are deposited uniformly on a substrate. Atoms of at least one additional III-V compound are also introduced such that the atoms of the two III-V compounds form a repeating superlattice structure of alternating thin layers. Atoms of a surfactant are also introduced into the vacuum chamber while the III-V semiconductor compounds are being introduced, or immediately thereafter, such that the surfactant atoms act to improve the quality of the resulting SL structure. The surfactant is preferably bismuth, and the III-V semiconductor compounds are preferably GaSb along with either InAs or InAsSb; atoms of each material are preferably introduced using molecular beam epitaxy. The resulting superlattice structure is suitably used to form at least a portion of an IR photodetector.
    Type: Grant
    Filed: August 1, 2013
    Date of Patent: April 26, 2016
    Assignee: TELEDYNE SCIENTIFIC & IMAGING, LLC
    Inventors: Allan Evans, William Tennant, Andrew Hood
  • Patent number: 9325335
    Abstract: A comparator circuit suitable for use in a column-parallel single-slope analog-to-digital converter comprises a comparator, an input voltage sampling switch, a sampling capacitor arranged to store a voltage which varies with an input voltage when the sampling switch is closed, and a local ramp buffer arranged to buffer a global voltage ramp applied at an input. The comparator circuit is arranged such that its output toggles when the buffered global voltage ramp exceeds the stored voltage. Both DC- and AC-coupled comparator embodiments are disclosed.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: April 26, 2016
    Assignee: TELEDYNE SCIENTIFIC & IMAGING, LLC
    Inventor: Mihail M. Milkov
  • Patent number: 9326383
    Abstract: A system and method is disclosed for fabricating a heat spreader system, including providing a plurality of bottom microporous wicks recessed in a bottom substrate, bonding a center substrate to the bottom substrate, and bonding a top substrate having a top chamber portion to the center substrate to establish a first vapor chamber with said plurality of bottom microporous wicks.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: April 26, 2016
    Assignee: Teledyne Scientific & Imaging, LLC.
    Inventors: Steve Qingjun Cai, Chung-Lung Chen, Chialun Tsai
  • Patent number: 9292378
    Abstract: An SEU protection circuit comprises first and second storage means for receiving primary and redundant versions, respectively, of an n-bit wide data value that is to be corrected in case of an SEU occurrence; the correction circuit requires that the data value be a 1-hot encoded value. A parity engine performs a parity operation on the n bits of the primary data value. A multiplexer receives the primary and redundant data values and the parity engine output at respective inputs, and is arranged to pass the primary data value to an output when the parity engine output indicates ‘odd’ parity, and to pass the redundant data value to the output when the parity engine output indicates ‘even’ parity. The primary and redundant data values are suitably state variables, and the parity engine is preferably an n-bit wide XOR or XNOR gate.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: March 22, 2016
    Assignee: TELEDYNE SCIENTIFIC & IMAGING, LLC
    Inventors: John Wallner, Michael Gorder
  • Patent number: 9276159
    Abstract: A structure comprised of an InAsSb layer adjacent to a GaSb layer, with the adjacent InAsSb and GaSb layers repeating to form a superlattice (SL). The structure is preferably an unstrained SL, wherein the composition of the InAsSb layer is InAs0.91Sb0.09; the InAs0.91 Sb0.09 layers are preferably lattice-matched to the GaSb layers. The SL structure is preferably arranged such that the Sb component of the InAsSb layers reduces the strain in the SL structure so that it is less than that found in an InAs/GaSb Type-II Strained Layer Superlattice (SLS). The present SL structure is suitably employed as part of an infrared photodetector.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: March 1, 2016
    Assignee: TELEDYNE SCIENTIFIC & IMAGING, LLC
    Inventors: Allan Evans, William Tennant, Andrew Hood
  • Patent number: 9266733
    Abstract: A layered construction for application to a device or substrate or placement in an enclosed space for use in decontaminating the underlying surface or enclosed space comprises a cathode, an electrolyte layer, an anode and a protective surface layer. A compound that can be electrically decomposed to release on demand and over an extended period of time, an oxidant is included in the layered structure, preferably in the electrolyte layer. Preferred compounds are those which can release halogen ions which react with various different chemical or biological contaminants which may contact the protective layer, destroying, or devitalizing the contaminants.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: February 23, 2016
    Assignee: TELEDYNE SCIENTIFIC & IMAGING, LLC
    Inventors: Martin W. Kendig, Young J. Chung, Alan B. Harker, Dennis R. Strauss
  • Patent number: 9252069
    Abstract: A cooling apparatus includes a direct-bonded copper (“DBC”) substrate, the DBC substrate having a plurality of micro-structure tabs formed on a fluid impingement side of the DBC substrate, and a jet head in complementary opposition to the fluid impingement side. The jet head has a first plurality of micro-jets facing the fluid impingement side, each of the first plurality of micro-jets having a nozzle, and a second plurality of micro-jets facing the fluid impingement side so the jet head is configured to deliver a fluid to the plurality of micro-structure tabs through the first and second plurality of micro-jets.
    Type: Grant
    Filed: August 31, 2010
    Date of Patent: February 2, 2016
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventors: Avijit Bhunia, Alex P. Moffatt, Mark R. Gardner, Chung-Lung Chen
  • Patent number: 9228894
    Abstract: A mounting structure between the spectral filter and optical sensor includes one or more beads of epoxy that are bonded to the face of the sensor at locations adjacent and bonded to the edge of the spectral filter around its perimeter. Placement of the epoxy so that it bonds to the edge of the spectral filter improves the robustness of the package to sheer stresses. Placement of the epoxy at the edge, suitably in discrete spot bonds, also avoids putting epoxy in the optical path, contaminating the optically active area or using epoxy to control the gap height. Alignment of the spectral filter in the plane (x,y) may be achieved using fiducial marks on the sensor and filter. Alignment of the spectral filter out of the plane (z) may be achieved using incompressible spacer balls that set the gap height precisely to the diameter of the ball. Alternately, the spectral filter may be placed in direct contact with the optically active area of the sensor.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: January 5, 2016
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventor: Thomas P. Sprafke
  • Publication number: 20150344705
    Abstract: A method for biofouling mitigation using a surface coating with magnetically aligned particles. A coating material that requires curing is provided, to which magnetic particles are added; this coating is applied to a surface. The applied coating is then subjected to a magnetic field in situ such that the magnetic particles are formed into microstructures that render the surface rougher than it would be without the microstructures. The coating is then allowed to cure. The random and non-toxic surface features created by the magnetic particles and magnetic field provide the coated surface with broad spectrum fouling resistance against organisms such as barnacles and bacteria.
    Type: Application
    Filed: May 30, 2014
    Publication date: December 3, 2015
    Applicant: Teledyne Scientific & Imaging, LLC
    Inventors: Rahul Ganguli, Vivek Mehrotra, J. Eric Henckel
  • Publication number: 20150347222
    Abstract: An SEU protection circuit comprises first and second storage means for receiving primary and redundant versions, respectively, of an n-bit wide data value that is to be corrected in case of an SEU occurrence; the correction circuit requires that the data value be a 1-hot encoded value. A parity engine performs a parity operation on the n bits of the primary data value. A multiplexer receives the primary and redundant data values and the parity engine output at respective inputs, and is arranged to pass the primary data value to an output when the parity engine output indicates ‘odd’ parity, and to pass the redundant data value to the output when the parity engine output indicates ‘even’ parity. The primary and redundant data values are suitably state variables, and the parity engine is preferably an n-bit wide XOR or XNOR gate.
    Type: Application
    Filed: May 29, 2014
    Publication date: December 3, 2015
    Applicant: Teledyne Scientific & Imaging, LLC
    Inventors: JOHN WALLNER, Michael Gorder
  • Patent number: 9203513
    Abstract: An optical communication system may include a light transmission unit transmitting a light beam having a first polarization, a quarter waveplate to receive the light beam and to modify the light beam to have a second polarization, and a retroreflector to receive the light beam from the quarter waveplate and reflect the light beam to the quarter waveplate, which modifies the light beam to have a third polarization. The optical communication system may also include a half waveplate to modify the first polarization such that the first polarization is about 90 degrees rotated compared to the third polarization, and a polarizer to pass the light beam having the third polarization and to block most of the light beam having the first polarization.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: December 1, 2015
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventors: Bruce K. Winker, Bing Wen, Jian Ma
  • Patent number: 9202704
    Abstract: A system for forming self-aligned contacts includes electroplating a first metal contact onto a Group III-V semiconductor substrate, the first metal contact having a greater height than width and having a straight sidewall profile, etching back the semiconductor substrate down to a base layer to expose an emitter semiconductor layer under the first metal contact, conformally depositing a dielectric layer on a vertical side of the first metal contact, a vertical side of the emitter semiconductor layer and on the base layer, anisotropically etching the dielectric layer off of the semiconductor substrate to form a dielectric sidewall spacer on the vertical side of the first metal contact and providing a second metal contact immediately adjacent the dielectric sidewall spacer.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: December 1, 2015
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventors: Miguel Urteaga, Richard L. Pierson, Jr., Keisuke Shinohara
  • Patent number: 9180218
    Abstract: A self-decontaminating system for decontaminating a surface on demand is disclosed herein. The system contains an electrochemical cell and at least one portion of the surface forms a functional component of the cell. The system may include an electrocatalytic fabric which is flexible and resistant to tears and breaks, such that the fabric can be rolled up or pleated in order to provide a high surface area structure that can serve as an active filter. The fabric can function as a stand-alone system or a protective coating. Also disclosed are methods for fabricating, decontaminating, and regenerating the self-decontaminating fabric.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: November 10, 2015
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventors: Martin W. Kendig, Young J. Chung
  • Publication number: 20150303344
    Abstract: A structure comprised of an InAsSb layer adjacent to a GaSb layer, with the adjacent InAsSb and GaSb layers repeating to form a superlattice (SL). The structure is preferably an unstrained SL, wherein the composition of the InAsSb layer is InAs0.91Sb0.09; the InAs0.91 Sb0.09 layers are preferably lattice-matched to the GaSb layers. The SL structure is preferably arranged such that the Sb component of the InAsSb layers reduces the strain in the SL structure so that it is less than that found in an InAs/GaSb Type-II Strained Layer Superlattice (SLS). The present SL structure is suitably employed as part of an infrared photodetector.
    Type: Application
    Filed: December 21, 2012
    Publication date: October 22, 2015
    Applicant: Teledyne Scientific & Imaging, LLC
    Inventor: Teledyne Scientific & Imaging, LLC
  • Patent number: 9165894
    Abstract: A cascode gain stage apparatus includes an input transistor having an RF input node and a transistor output node, an output transistor having a transistor input node and an RF output node, and a DC blocking capacitor connected between the transistor input and transistor output nodes.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: October 20, 2015
    Assignee: Teledyne Scientific & Imaging, LLC
    Inventors: Zachary M. Griffith, Thomas Benjamin Reed
  • Publication number: 20150292943
    Abstract: A mounting structure between the spectral filter and optical sensor includes one or more beads of epoxy that are bonded to the face of the sensor at locations adjacent and bonded to the edge of the spectral filter around its perimeter. Placement of the epoxy so that it bonds to the edge of the spectral filter improves the robustness of the package to sheer stresses. Placement of the epoxy at the edge, suitably in discrete spot bonds, also avoids putting epoxy in the optical path, contaminating the optically active area or using epoxy to control the gap height. Alignment of the spectral filter in the plane (x,y) may be achieved using fiducial marks on the sensor and filter. Alignment of the spectral filter out of the plane (z) may be achieved using incompressible spacer balls that set the gap height precisely to the diameter of the ball. Alternately, the spectral filter may be placed in direct contact with the optically active area of the sensor.
    Type: Application
    Filed: April 14, 2014
    Publication date: October 15, 2015
    Applicant: TELEDYNE SCIENTIFIC & IMAGING, LLC
    Inventor: Thomas P. Sprafke