Patents Assigned to Vanderbilt University
  • Patent number: 11883821
    Abstract: The present disclosure relates to a fluidic device to detect, capture, and/or remove disease material in a biological fluid. The present invention also relates to methods for the treatment/prevention of sepsis through the use of the claimed device.
    Type: Grant
    Filed: September 1, 2021
    Date of Patent: January 30, 2024
    Assignee: Vanderbilt University
    Inventors: Sinead E. Miller, Charleson S. Bell, Todd D. Giorgio, Andrew L. Cook
  • Patent number: 11884676
    Abstract: Disclosed herein are analogues of 6-(4-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)oxy)piperidin-1 -yl)-[1,2,4]triazolo[4,3-b]pyridazine of formula (Ib), which may be useful as positive allosteric modulators of the muscarinic acetylcholine receptor M4 (mAChR M4). Also disclosed herein are methods of making the compounds, pharmaceutical compositions comprising the compounds, and methods of treating neurological and psychiatric disorders associated with muscarinic acetylcholine receptor dysfunction using the compounds and compositions.
    Type: Grant
    Filed: March 22, 2023
    Date of Patent: January 30, 2024
    Assignee: Vanderbilt University
    Inventors: Craig W. Lindsley, P. Jeffrey Conn, Darren W. Engers, Alison R. Gregro, Kayla J. Temple, Madeline F. Long, Anna E. Ringuette, Logan A. Baker, Thomas Jensen
  • Patent number: 11883304
    Abstract: The present disclosure provides for a device and method of control for an artificial prosthetic knee. A prosthetic knee according to the present disclosure relies on strictly passive means of providing support during weight bearing and supplements a resistive swing-phase mechanism with a small powered actuator. This actuator adds power to the knee, exclusively during swing phase, to improve swing-phase behavior. In particular, the knee still relies on the resistive swing-phase mechanism to provide nominal swing-phase knee motion, but supplements that motion as needed with the small powered actuator.
    Type: Grant
    Filed: October 13, 2022
    Date of Patent: January 30, 2024
    Assignee: Vanderbilt University
    Inventors: Michael Goldfarb, Almaskhan Baimyshev, Harrison Bartlett, Jantzen Lee
  • Patent number: 11872398
    Abstract: A method for designing a patient-customized EA or selecting an existing EA that fits the patient best includes segmenting shapes of SOIs of the cochlea in a pre-operative CT image using a shape model; defining a 3D curve of interest within the shape model of the SOIs as a sequence of points-; automatically transforming the defined 3D curve to the pre-operative CT image so as to obtain a structure curve in the cochlea; determining a length and curvatures of the structure curve at the sequence of points; and designing a patient-customized EA or selecting an existing EA based on the determined length and curvatures of the structure curve such that after the EA shape model, which estimates the resting state shape of the EA, is rigidly registered to the structure curve in the cochlea, the EA shape model has a registration error smaller than a preset value.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: January 16, 2024
    Assignee: VANDERBILT UNIVERSITY
    Inventors: Jack H. Noble, Robert F. Labadie, Benoit M. Dawant
  • Patent number: 11865723
    Abstract: An exemplary robotic system includes a plurality of controllable joints and a controller. An exemplary control method provides for controlling the controllable joints by the controller. The control method provides for determining a configuration space for the robotic system and determining a reference movement path within the configuration space. The control method then provides for assigning a plurality of streamlines in the configuration space to yield a flow field based on the reference movement path. The control method then provides for measuring actual velocity vectors of the robotic system in the configuration space. The control method then provides for determining an error velocity vector based on a difference between the actual velocity vector and the desired velocity vector given by the flow field corresponding to the current robot configuration.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: January 9, 2024
    Assignee: Vanderbilt University
    Inventors: Michael Goldfarb, Andres Martinez-Guerra, Brian Lawson
  • Patent number: 11856955
    Abstract: In one aspect, the invention relates to binary compositions that disrupt ORco-mediated odorant sensing. In particular, compounds and compositions are provided that can inhibit sensory (e.g., host targeting) functions in organisms that express ORco receptors such as airborne insects, e.g., mosquitos, and ticks. Methods of employing such agents, and articles incorporating the same, are also provided. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: January 2, 2024
    Assignee: Vanderbilt University
    Inventors: Laurence J. Zwiebel, Ian M. Romaine, Sam Ochieng, Alex Gregory Waterson, Gary A. Sulikowski
  • Patent number: 11851478
    Abstract: The present disclosure is directed to antibodies binding to and neutralizing Chikungunya virus (CHIKV) and methods for use thereof.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: December 26, 2023
    Assignee: VANDERBILT UNIVERSITY
    Inventor: James E Crowe, Jr.
  • Patent number: 11851406
    Abstract: Described are positive allosteric modulators of muscarinic acetylcholine receptor M1 (mAChR M1), pharmaceutical compositions including the compounds, and methods of using the compounds and compositions for treating neurological disorders, psychiatric disorders, or a combination thereof.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: December 26, 2023
    Assignee: Vanderbilt University
    Inventors: Craig W. Lindsley, P. Jeffrey Conn, Darren W. Engers, Julie L. Engers, Aaron M. Bender, Madeline Long
  • Patent number: 11851428
    Abstract: Disclosed is a compound of formula (I): wherein all symbols are defined in the description. Also disclosed are pharmaceutical compositions comprising the compounds, methods of making the compounds, kits comprising the compounds, and methods of using the compounds, compositions and kits for treatment of disorders associated with TREK-1, TREK-2 or both TREK-1 and TREK-2 dysfunction in a mammal.
    Type: Grant
    Filed: May 24, 2021
    Date of Patent: December 26, 2023
    Assignees: ONO PHARMACEUTICAL CO., LTD., VANDERBILT UNIVERSITY
    Inventors: Craig W. Lindsley, Joshua M. Wieting, Kevin M. Mcgowan, Jerod S. Denton, Kentaro Yashiro, Haruto Kurata, Yoko Sekioka, Takahiro Mori, Yuzo Iwaki
  • Patent number: 11841413
    Abstract: The present application provides a system and method for using a nuclear magnetic resonance (NMR) system. The method includes performing a pulse sequence using the NMR system that spatially encodes NMR signal evolutions to be acquired from a subject using an aggregated radio-frequency (B1) field incoherence and resolving the NMR signal evolutions acquired from the subject using at least one of a dictionary of known magnetic resonance fingerprinting (MRF) signal evolutions to determine matches in the NMR signal evolutions to the known MRF signal evolutions or an optimization process. The method also includes generating at least two spatially-resolved measurements indicating quantitative tissue parameters of the subject in at least two locations.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: December 12, 2023
    Assignees: Case Western Reserve University, Vanderbilt University
    Inventors: Mark A. Griswold, William A. Grissom
  • Publication number: 20230392205
    Abstract: The present disclosure is directed to the use of left-handed DNA (L-DNA) tracer to identify the source, track the distribution, and validate the integrity of products or resources that are highly regulated, valuable, or hazardous (e.g., pharmaceuticals, treated water, chemicals, designer products, and ammunitions). L-DNA tracers can encrypt unique identifying information, as well as more general information about the type of product, such as the manufacturing location, source, and date, directly into the nucleotide sequence. The L-DNA tracers can embed directly into the product so that it could neither be disassociated from the product nor be re-associated with another product. Because there are no technologies available to sequence L-DNA, the L-DNA tracers cannot be reverse engineered, copied, or falsified. The L-DNA tracers are only deciphered using a unique detection key.
    Type: Application
    Filed: May 26, 2023
    Publication date: December 7, 2023
    Applicant: Vanderbilt University
    Inventors: Nicholas M. ADAMS, Frederick R. HASELTON
  • Patent number: 11834416
    Abstract: The present disclosure is directed to a cleavable agent for enhanced magnetic resonance generally corresponding to the formula Y-L-R, wherein Y represents a catalyst-binding moiety having at least one isotopically labeled heteroatom, L represents a cleavable bond, and R represents a hyperpolarized payload having at least one isotopically labeled carbon. Also disclosed herein is a method of cleaving the cleavable agent for enhanced magnetic resonance.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: December 5, 2023
    Assignees: Board of Trustees of Southern Illinois University, Vanderbilt University
    Inventors: Boyd M. Goodson, Eduard Y. Chekmenev, Bryce E. Kidd, Jamil A. Mashni, Miranda Limbach, Yuqing Hou, Fan Shi
  • Patent number: 11832601
    Abstract: The disclosure relates to genetically modified bacteria, genetically modified arthropods, and methods for controlling and/or reducing arthropod populations.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: December 5, 2023
    Assignees: VANDERBILT UNIVERSITY, YALE UNIVERSITY
    Inventors: Jason Metcalf, Seth R. Bordenstein, Daniel Lepage, Sarah Bordenstein, Mark Hochstrasser, John F. Beckmann, Judith Ronau
  • Patent number: 11835609
    Abstract: Imaging methods for assessing the macromolecular content, such as myelin, are of great interest for understanding brain tissue microstructure, and have shown potentials in diagnosing and prognosing demyelinating diseases. for example. Magnetization transfer (MT) is a MRI contrast mechanism that enables detection of macromolecules. Previously, the MT effect has been analyzed by a semi-quantitative method termed magnetization transfer ratio (MTR) or by a quantitative magnetization transfer (qMT) method. However, because MTR does not have enough sensitivity and specificity to myelin, and qMT takes a very long scan time, their translation into clinical scenarios has been limited. This disclosure describes a MT data analysis metric using double saturation pulse offsets and powers (dopMTR).
    Type: Grant
    Filed: November 7, 2022
    Date of Patent: December 5, 2023
    Assignee: Vanderbilt University
    Inventor: ZhongLiang Zu
  • Patent number: 11823807
    Abstract: A nanotweezer and method of trapping and dynamic manipulation thereby are provided. The nanotweezer comprises a first metastructure including a first substrate, a first electrode, and a plurality of plasmonic nanostructures arranged in an array, and a trapping region laterally displaced from the array; a second metastructure including a second substrate and a second electrode; a microfluidic channel between the first metastructure and the second metastructure; a voltage source configured to selectively apply an electric field between the first electrode and the second electrode; and a light source configured to selectively apply an excitation light to the microfluidic channel at a first location corresponding to the array, thereby to trap a nanoparticle at a second location corresponding to the trapping region.
    Type: Grant
    Filed: July 27, 2021
    Date of Patent: November 21, 2023
    Assignee: Vanderbilt University
    Inventor: Justus C. Ndukaife
  • Patent number: 11820757
    Abstract: Disclosed herein are substituted hexahydro-1H-cyclopenta[c]pyrrole compounds, which may be useful as antagonists of the muscarinic acetylcholine receptor M4 (mAChR M4). Also disclosed herein are methods of making the compounds, pharmaceutical compositions comprising the compounds, and methods of treating disorders using the compounds and compositions.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: November 21, 2023
    Assignee: Vanderbilt University
    Inventors: Craig W. Lindsley, P. Jeffrey Conn, Darren W. Engers, Julie L. Engers, Kayla J. Temple, Aaron M. Bender, Logan A. Baker
  • Patent number: 11820864
    Abstract: Disclosed herein are glycidol-based polymers, nanoparticles, and methods related thereto useful for a variety of applications, including, but not limited to, drug delivery. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: November 21, 2023
    Assignee: Vanderbilt University
    Inventors: Eva M. Harth, Benjamin R. Spears
  • Patent number: 11813110
    Abstract: The present disclosure is directed towards systems and methods for detecting and sizing mineralized tissue. An exemplary method, according to an embodiment of the present disclosure, can provide for imaging a region of interest containing the mineralized tissue with unfocused ultrasound beams via a primary imaging method. The method can then provide for computing a wavefront coherence at the imaged region of interest. The method can then provide for segmenting pixels of the imaged region of interest based on their intensities and intensities of surrounding pixels. The method can then provide for identifying a border and a shadow of the mineralized tissue based on the segmenting. Then, the method can provide for calculating a size of the mineralized tissue based on the border and the shadow.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: November 14, 2023
    Assignee: VANDERBILT UNIVERSITY
    Inventors: Brett C. Byram, Ryan S. Hsi, Jaime E. Tierney
  • Patent number: 11815671
    Abstract: A 2D spatial differentiator operates in transmission and comprises a Si nanorod photonic crystal that can transform an image, Ein, into its second-order derivative, Eout ? ?2 Ein, allowing for direct discrimination of the edges in the image. The use of a 2D photonic crystal allows for differentiation and edge detection in all directions with a numerical aperture (NA) up to 0.315 and an experimental resolution smaller than 4 ?m. The nanophotonic differentiator is able to be directly integrated into an optical microscope and onto a camera sensor, demonstrating the ease with which it can be vertically integrated into existing imaging systems. Furthermore, integration with a metalens is demonstrated for realizing a compact and monolithic image-processing system. In all cases, the use of the nanophotonic differentiator allows for a significant reduction in size compared to traditional systems, opening new doors for optical analog image processing in applications involving computer vision.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: November 14, 2023
    Assignee: Vanderbilt University
    Inventors: Jason G. Valentine, You Zhou, Hanyu Zheng
  • Patent number: 11815142
    Abstract: This disclosure relates to a magnetorheological (MR) brake. The MR brake includes a rotor constructed at least partially of a ferromagnetic material, and a housing that supports the rotor such that the rotor and the housing are rotatable relative to each other about an axis, wherein the housing and rotor are configured such that a fluid gap is defined between the housing and the rotor, and wherein portions of the housing adjacent the rotor are constructed at least partially of a ferromagnetic material. An MR fluid is disposed in the fluid gap. A current-carrying coil is excitable to generate a magnetic field within ferromagnetic portions of the rotor and the housing and acts on the MR fluid. At least one element constructed of a material having low magnetic permeability is configured route the lines of magnetic flux through surrounding higher permeability material on opposite sides of the fluid gap.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: November 14, 2023
    Assignee: VANDERBILT UNIVERSITY
    Inventors: Patrick Wellborn, Jason Mitchell, Robert Webster, III