Patents Assigned to Vanderbilt University
  • Patent number: 11493751
    Abstract: An optical relay comprises a first scan mirror configured to receive an input optical beam, and to reflect the input optical beam as a first intermediate optical beam; a telecentric mirror configured to receive the first intermediate optical beam, and to reflect the first intermediate optical beam as a second intermediate optical beam; a second scan mirror configured to receive the second intermediate optical beam, and to reflect the second intermediate optical beam as an output optical beam; and a lens system disposed between the telecentric mirror and the first and second scan mirrors, such that the first intermediate optical beam and the second intermediate optical beam pass through the lens system. The optical relay may be a component of an optical system which further includes an optical engine.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: November 8, 2022
    Assignee: Vanderbilt University
    Inventors: Yuankai Tao, Joseph D. Malone
  • Patent number: 11484032
    Abstract: In one aspect, the invention relates to chemical modulators of insect olfactory receptors. In particular, compounds and compositions are provided that can inhibit sensory (e.g., host targeting) functions in airborne insects such as mosquitos. Methods of employing such agents, and articles incorporating the same, are also provided. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present invention.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: November 1, 2022
    Assignee: VANDERBILT UNIVERSITY
    Inventors: Laurence Zwiebel, Gregory M. Pask, David C. Rinker, Ian M. Romaine, Gary A. Sulikowski, Paul R. Reid, Alex G. Waterson, Kwangho Kim, Patrick L. Jones, Robert W. Taylor
  • Patent number: 11471444
    Abstract: Thromboxane A2 receptor antagonists, such as ifetroban, inhibit solid tumor metastasis. The formation of surface and microscopic lung metastases are inhibited. Thromboxane A2 receptor antagonists can inhibit the tumor metastasis process without affecting the growth or development of a primary tumor.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: October 18, 2022
    Assignee: Vanderbilt University
    Inventors: Jill M. Pulley, Robert R. Lavieri
  • Patent number: 11474531
    Abstract: A robot for transporting a biodevice from one place to another place, comprising a body for carrying the biodevice; a driving assembly for driving the body in omnidirectional motion; a sensing unit for sensing at least a position and orientation of the body; and a control unit coupled to the driving assembly and the sensing unit for generating one or more control signals based on at least the sensed position and orientation of the body to drive the driving assembly so as to move the body to a desired place and to arrive with the correct orientation.
    Type: Grant
    Filed: January 19, 2022
    Date of Patent: October 18, 2022
    Assignee: VANDERBILT UNIVERSITY
    Inventors: Ronald S. Reiserer, John P. Wikswo
  • Patent number: 11471306
    Abstract: The present disclosure provides for a device and method of control for an artificial prosthetic knee. A prosthetic knee according to the present disclosure relies on strictly passive means of providing support during weight bearing and supplements a resistive swing-phase mechanism with a small powered actuator. This actuator adds power to the knee, exclusively during swing phase, to improve swing-phase behavior. In particular, the knee still relies on the resistive swing-phase mechanism to provide nominal swing-phase knee motion, but supplements that motion as needed with the small powered actuator.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: October 18, 2022
    Assignee: Vanderbilt University
    Inventors: Michael Goldfarb, Almaskhan Baimyshev, Harrison Bartlett, Jantzen Lee
  • Patent number: 11465144
    Abstract: In one aspect of the invention, the fluidic device includes a fluidic chip includes a body having a first surface and an opposite, second surface, one or more channels formed in the body in fluidic communications with input ports and output ports for transferring one or more fluids between the input ports and the output ports, and a fluidic chip registration means formed on the first surface for aligning the fluidic chip with a support structure; and an actuator configured to engage with the one or more channels at the second surface of the body for selectively and individually transferring the one or more fluids through the one or more channels from at least one of the input ports to at least one of the output ports at desired flowrates.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: October 11, 2022
    Assignee: VANDERBILT UNIVERSITY
    Inventors: David K. Schaffer, Dmitry A. Markov, Ronald S. Reiserer, Lisa McCawley, Michael Geuy, Clayton M. Britt, John P. Wikswo
  • Publication number: 20220314211
    Abstract: A method of fabricating a carbon nanotube (“CNT”) array includes providing a substrate with a CNT catalyst disposed on a surface of the substrate, heating the CNT catalyst to an annealing temperature, exposing the CNT catalyst to a CNT precursor for an exposure period to pre-load the CNT catalyst, and exposing the pre-loaded CNT catalyst to a carbon source for a growth period to form the CNT array. The formed CNT array comprises a plurality of CNT bundles that are aligned with one another in an alignment direction. At least one of the plurality of bundles comprises an average structural factor of 1.5 or less along an entirety of the length thereof.
    Type: Application
    Filed: March 31, 2021
    Publication date: October 6, 2022
    Applicants: Toyota Motor Engineering & Manufacturing North America, Inc., Vanderbilt University
    Inventors: Yuyang Song, Shailesh N. Joshi, Piran R. Kidambi, Peifu Cheng
  • Patent number: 11459295
    Abstract: The invention includes 2-?-naphthyl-acetic acid derivatives, which are selective AKR1C3 inhibitors. In certain embodiments, the compounds of the invention are (R)-naproxen analogs. The invention further includes methods of treating cancer, such as prostate cancer and/or castration-resistant prostate cancer, using at least one compound of the invention.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: October 4, 2022
    Assignees: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA, VANDERBILT UNIVERSITY
    Inventors: Trevor M. Penning, Adegoke Adeniji, Lawrence J. Marnett
  • Publication number: 20220308065
    Abstract: The present disclosure is directed to human monoclonal IgE antibodies, and IgG antibodies engineered therefrom. Such engineered antibodies can be used to blunt pathologic IgE responses in subjects, such as in the treatment or prevention of allergies.
    Type: Application
    Filed: May 26, 2022
    Publication date: September 29, 2022
    Applicant: Vanderbilt University
    Inventor: Scott A. SMITH
  • Patent number: 11452481
    Abstract: Devices, kits, and methods for testing the integrity of a cavity within an anatomical organ. For example, the devices, kits, and methods described herein are useful for detecting leaks in an anastomosis or for testing the integrity or repair of a defect in anatomy.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: September 27, 2022
    Assignee: Vanderbilt University
    Inventor: Timothy M. Geiger
  • Patent number: 11447734
    Abstract: A continuous automated perfusion culture analysis system (CAPCAS) comprises one or more fluidic systems configured to operate large numbers of biodevices in parallel. Each fluidic system comprises an input reservoir plate for receiving media; a biodevice plate comprising an array of biodevices fluidically coupled to the input reservoir plate, configured such that each biodevice has independent media delivery, fluid removal, stirring, and gas control, and each biodevice is capable of continuously receiving the media from the input reservoir plate; and an output plate fluidically coupled to the biodevice plate for real-time analysis and sampling. The operations of the CAPCAS are automated and computer-controlled wirelessly. The CAPCAS can also be used for abiotic and biotic chemical synthesis processes.
    Type: Grant
    Filed: January 19, 2022
    Date of Patent: September 20, 2022
    Assignee: VANDERBILT UNIVERSITY
    Inventors: Ronald S. Reiserer, Gregory B. Gerken, David K. Schaffer, John P. Wikswo
  • Patent number: 11439564
    Abstract: Provided are apparatuses for augmenting human speed, human-driven compliant mechanisms, artificial limbs to augment human movement, and the like. The apparatuses can include variable stiffness mechanisms including springs that can be configured to selectively store and subsequently release energy generated by human movement. The apparatuses can selectively release the captured energy supplied by the human to provide force and power output beyond the physical capability of the human.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: September 13, 2022
    Assignee: VANDERBILT UNIVERSITY
    Inventors: David Braun, Amanda Sutrisno, Tiange Zhang
  • Publication number: 20220281958
    Abstract: The present disclosure is directed to antibodies binding to and neutralizing the coronavirus designated SARS-CoV-2 and methods for use thereof.
    Type: Application
    Filed: March 18, 2022
    Publication date: September 8, 2022
    Applicant: Vanderbilt University
    Inventors: James E. CROWE, JR., Seth ZOST, Robert CARNAHAN, Pavlo GILCHUK
  • Patent number: 11435399
    Abstract: Systems and methods are provided for testing a threshold energy required to cause a latchup on an electronic component. An exemplary method includes applying a series of laser pulses to a testing object with a pulsed laser unit. The testing object is connected to a testing circuit which can measure the energy of each of the series of laser pulses, and detect whether a pulse of the series of laser pulses resulted in a latchup on the testing object. Upon detecting the pulse, the method provides for logging the energy of the pulse using a recording unit and logging the latchup status of the test device. If a latchup is detected, the testing circuit automatically mitigates the latchup event.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: September 6, 2022
    Assignee: Vanderbilt University
    Inventors: Andrew L. Sternberg, Ronald D. Schrimpf, Robert A. Reed
  • Patent number: 11426197
    Abstract: A steerable surgical needle (10) includes an elongated needle shaft (12), a beveled tip portion (14), and a flexural element (16) that connects the needle shaft (12) with the tip portion (14) and permits the tip portion to deflect relative to the needle shaft. A method for steering the surgical needle (10) through tissue includes the steps of advancing the needle in the body tissue to induce tip flexure which causes the needle to follow a curved trajectory, and rotating the needle about its longitudinal axis in place, without advancement, to remove the tip flexure.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: August 30, 2022
    Assignee: VANDERBILT UNIVERSITY
    Inventors: Philip J. Swaney, Robert J. Webster, III
  • Patent number: 11427573
    Abstract: Indazole compounds which are useful as allosteric potentiators/positive allosteric modulators of the metabotropic glutamate receptor subtype 4 (mGluR4); synthetic methods for making the compounds; pharmaceutical compositions comprising the compounds; and methods of using the compounds, for example, in treating neurological and psychiatric disorders or other disease states associated with glutamate dysfunction.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: August 30, 2022
    Assignee: Vanderbilt University
    Inventors: P. Jeffrey Conn, Craig W. Lindsley, Andrew S. Felts, Colleen M. Niswender, Rory A. Capstick, Paul K. Spearing, Sean R. Bollinger
  • Patent number: 11414406
    Abstract: Disclosed herein are 3-azabicyclo[3.1.0]hexan-6-amine compounds, which may be useful as antagonists of the muscarinic acetylcholine receptor M4 (mAChR M4). Also disclosed herein are methods of making the compounds, pharmaceutical compositions comprising the compounds, and methods of treating disorders using the compounds and compositions.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: August 16, 2022
    Assignee: Vanderbilt University
    Inventors: Craig W. Lindsley, P. Jeffrey Conn, Darren W. Engers, Julie L. Engers, Aaron M. Bender
  • Patent number: 11406826
    Abstract: A method for using information of patient-specific cochlea size and/or shape to determine a patient-customized cochlear implant electrode insertion and placement plan includes segmenting shapes of structures of interest (SOIs) of the cochlea in a pre-operative CT image of the cochlea using a shape model; defining a 3D modiolar hugging curve within the shape model of the SOIs as a sequence of points; automatically transforming the defined 3D modiolar hugging curve to the pre-operative CT image so as to obtain a modiolar curve in the cochlea; rigidly registering an EA shape model of the EA to the modiolar curve in the cochlea, thereby placing a resting state shape of the EA within the patient's SOIs such that the EA matches the modiolar curve in the cochlea; and determining a patient-customized insertion plan for electrode placement using the registered EA shape model.
    Type: Grant
    Filed: April 24, 2018
    Date of Patent: August 9, 2022
    Assignee: VANDERBILT UNIVERSITY
    Inventors: Jack H. Noble, Robert F. Labadie, Benoit M. Dawant
  • Patent number: 11409142
    Abstract: Metallic and dielectric domains in phase change materials (PCM) provide spatially localized changes in the local dielectric environment, enabling launching, reflection, and transmission of hyperbolic polaritons (HPs) at the PCM domain boundaries, and tuning the wavelength of HPs propagating in hyperbolic materials over these domains, providing a methodology for realizing planar, sub-diffractive refractive optics. This approach offers reconfigurable control of in-plane HP propagation to provide design optical functionality because the phase change material can be manipulated by changing the local structure, for example, to manipulate polaritons in the adjacent hyperbolic material, thus tuning the wave propagation properties of the polaritons in the hyperbolic material.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: August 9, 2022
    Assignees: Vanderbilt University, University of Georgia Research Foundation, Inc.
    Inventors: Joshua D. Caldwell, Thomas G. Folland, Richard F. Haglund, Yohannes Abate
  • Patent number: 11403836
    Abstract: Devices and methods for visibly highlighting areas of a region including an imager configured to image the region with a sensitivity to at least one of wavelength, light level, or contrast greater than the human eye, an overlay element configured to visibly highlight areas of the region and registered to the imager to produce alignment of imaged features with highlighted features at the same location on the region, and at least one of a controller executing a program or logic configured to process acquired images from the imager to identify areas of the region determined not visible to the human eye, and control the overlay element to visibly highlight those areas on the region.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: August 2, 2022
    Assignees: AI BIOMED CORP., VANDERBILT UNIVERSITY
    Inventors: Adnan Abbas, Melanie McWade, Anita Mahadevan-Jansen