Patents Examined by Allana Lewin
  • Patent number: 8950469
    Abstract: A temperature control system includes a heat transfer medium supply configured to supply a first heat transfer medium of a first temperature into a heat transfer medium path; at least one heat transfer medium storage provided between the heat transfer medium path and the heat transfer medium supply and configured to store a second heat transfer medium of a second temperature higher than the first temperature; a heat transfer medium supply control device provided between the heat transfer medium supply and the heat transfer medium path and between the heat transfer medium storage and the heat transfer medium path and configured to stop a supply of the first heat transfer medium into the heat transfer medium path from the heat transfer medium supply and to supply the second heat transfer medium into the heat transfer medium path from the heat transfer medium storage when a heating unit generates heat.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: February 10, 2015
    Assignee: Tokyo Electron Limited
    Inventors: Yasuharu Sasaki, Ryo Nonaka, Nobuyuki Nagayama
  • Patent number: 8944155
    Abstract: A cylindrical, annular axial flow heat exchanger for use as a gas cooler in a thermal regenerative machine such as a Stirling engine is provided. The heat exchanger includes an outer shell of sufficient strength and thickness to withstand the pressure exerted by the working fluid and a tubular member positioned adjacent to and in contact with the outer shell, the tubular member having spaced apart sidewalls defining a flow passage therebetween. At least one of the sidewalls of the tubular member is embossed with ribs, the ribs being in contact with the inner surface of the outer shell thereby defining axially extending flow passages between the outer shell and tubular member along the circumference thereof for the flow of a second, gaseous fluid through the heat exchanger. The first fluid flows circumferentially through tubular member, while the second fluid flows axially between the outer shell and the tubular member.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: February 3, 2015
    Assignee: Dana Canada Corporation
    Inventor: Michael Andrew Martin
  • Patent number: 8931304
    Abstract: An example compressor arrangement includes a first compressor portion configured to compress a fluid and a second compressor portion configured to compress the fluid more than the first compressor portion. The compressor arrangement also includes a motor disposed between the first compressor portion and the second compressor portion. The first compressor portion is configured to communicate the fluid to the second compressor portion along a primary flow path. The second compressor portion is configured to divert at least some of the fluid from the primary flow path, communicating the diverted fluid back to the first compressor portion along a secondary flow path.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: January 13, 2015
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Craig M. Beers, Christopher McAuliffe
  • Patent number: 8931545
    Abstract: A heat exchanger arrangement is provided for an internal-combustion engine having a heat engine, which converts hot steam of a working medium by way of an expansion device to kinetic energy. The working medium, that can be delivered by a pump, can be heated in a first heat exchanger by a coolant and in a second heat exchanger by an exhaust gas of the internal-combustion engine. In the delivery direction, the working medium first flows through the first heat exchanger and, subsequently, through the second heat exchanger. The exhaust gas can flow through the first heat exchanger.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: January 13, 2015
    Assignee: Bayerische Motoren Werke Aktiengesellschaft
    Inventors: Raymond Freymann, Wolfgang Strobl, Walter Huebner, Andreas Obieglo, Peter Doemeland, Norbert Kraus, Juergen Becker, Michael Hoetger, Christian Goebel, Goeran Gensicke
  • Patent number: 8910706
    Abstract: An apparatus for cooling a heat-generating component is disclosed. The apparatus includes a cooling chamber containing a liquid metal. The cooling chamber has a heat-conducting wall thermally coupled to the heat-generating component. A plurality of extendable tubes making up an array of cooling pin fins is attached to the cooling chamber. Each of the extendable tubes has a port end that opens into the cooling chamber and a sealed end that projects away from the cooling chamber. Moreover, each of the extendable tubes has an extended position when filled with liquid metal from the cooling chamber and a retracted position when emptied of the liquid metal. A pump system is included for urging the liquid metal from the cooling chamber into the plurality of extendable tubes.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: December 16, 2014
    Assignee: International Business Machines Corporation
    Inventors: Don Alan Gilliland, Maurice Francis Holahan, Cary Michael Huettner
  • Patent number: 8910705
    Abstract: An automobile which includes a radiator fan control for heat pump HVAC which can selectively reverse fan direction based on ambient temperature and moisture to reduce ice buildup on a liquid-gas converter. The automobile may include a liquid-gas converter located within an engine bay, a radiator located adjacent the liquid-gas converter, a first fan located adjacent the radiator, a fuel cell and motor with the inverter located adjacent the first fan, the fuel cell supplying electricity to the motor with the inverter to drive the vehicle. The automobile can also include a temperature sensor located on an exterior surface of the automobile to sense an ambient temperature, a heater core connected to the liquid-gas converter and located between the engine bay and the passenger area, and a control unit connected to the first fan, the temperature sensor, and the heater core.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: December 16, 2014
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Shimpei Miura
  • Patent number: 8905124
    Abstract: A temperature controlled loadlock chamber for use in semiconductor processing is provided. The temperature controlled loadlock chamber may include one or more of an adjustable fluid pump, mass flow controller, one or more temperature sensors, and a controller. The adjustable fluid pump provides fluid having a predetermined temperature to a temperature-controlled plate. The mass flow controller provides gas flow into the chamber that may also aid in maintaining a desired temperature. Additionally, one or more temperature sensors may be combined with the adjustable fluid pump and/or the mass flow controller to provide feedback and to provide a greater control over the temperature. A controller may be added to control the adjustable fluid pump and the mass flow controller based upon temperature readings from the one or more temperature sensors.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: December 9, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Hsien Lin, Jyh-Cherng Sheu, Ming-Feng Yoo, Kewei Zuo
  • Patent number: 8905123
    Abstract: An automobile which includes a radiator fan control for heat pump HVAC which can selectively reverse fan direction based on ambient temperature and moisture to reduce ice buildup on a liquid-gas converter. The automobile may include a liquid-gas converter located within an engine bay, a radiator located adjacent the liquid-gas converter, a first fan located adjacent the radiator, a fuel cell and motor with the inverter located adjacent the first fan, the fuel cell supplying electricity to the motor with the inverter to drive the vehicle. The automobile can also include a temperature sensor located on an exterior surface of the automobile to sense an ambient temperature, a heater core connected to the liquid-gas converter and located between the engine bay and the passenger area, and a control unit connected to the first fan, the temperature sensor, and the heater core.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: December 9, 2014
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Shimpei Miura
  • Patent number: 8904816
    Abstract: Ice maker comprising a mould (10, 110) forming at a number of mould cavities (11, 111a, 11b) for receiving water and forming a respective piece of ice (41, 42,141), which number of mould cavities are arranged in at least one column defining a longitudinal direction; a first (2, 102) and a second shaft (3, 103); an endless conveyor (100), which is arranged to convey the mould in the longitudinal direction around at least the first shaft; and drive means (8) connected to at least one of the first and second shafts for driving the conveyor. The mould (10, 110) is formed of an elastic material and arranged to be elastically deformed as the mould passes over the first shaft (2, 102). Longitudinal communication channels (13a, 113a) are arranged between consecutive mould cavities (11, 111a) arranged in one column, for allowing water to flow between mould cavities in one column. A method of fabricating pieces of ice is also disclosed.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: December 9, 2014
    Assignee: Dometic Sweden AB
    Inventors: Anders Bergqvist, Per Wedby, Björn Flemsäter, Jan Rickman, Ingemar Hallin
  • Patent number: 8899061
    Abstract: An industrial heat load evaporative cooling system. The system includes multiple cooling towers and includes cooling coil heat transfer equipment locally associated with an industrial heat load, with the system subject to command and control equipment.
    Type: Grant
    Filed: September 22, 2012
    Date of Patent: December 2, 2014
    Assignee: R4 Ventures, LLC
    Inventor: Mikhail Pavlovich Reytblat
  • Patent number: 8899064
    Abstract: An ice bank for a refrigerator, comprises: an ice bank body having an ice-crushing unit and a discharging passage; and a mode conversion apparatus disposed in the ice bank body for guiding ice cubes to the ice-crushing unit, or guiding the ice cubes to the discharging passage for discharge in a non-crushed state, wherein the mode conversion apparatus comprises: a guide member rotatably disposed in the ice bank body for guiding ice cubes to the ice-crushing unit, or to the discharging passage for discharge in a non-crushed state; an elastic member for elastically supporting the guide member; and a driving unit for generating a driving force so as to rotate the guide member. Accordingly, ice cubes can be dispensed in a non-crushed state or in a crushed state, and limitations in installation places of the ice bank can be reduced.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: December 2, 2014
    Assignee: LG Electronics Inc.
    Inventor: Gue-Sec Hwang
  • Patent number: 8899076
    Abstract: Disclosed is a gas treatment device that can efficiently regulate the temperature of a gas without being affected by load.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: December 2, 2014
    Assignee: Mitsubishi Heavy Industries Compressor Corporation
    Inventors: Kazuhiro Takeda, Yosuke Nakagawa, Tomoaki Takeda, Yasushi Mori
  • Patent number: 8894894
    Abstract: Systems and methods compress, freeze and store forms at sufficiently low temperatures. A system provides a storage tank of liquefied gas, a gas-liquid separation tank, and a compression chamber. The compression chamber provides compression plates chilled by flow of liquefied gas through conduits traversing an interior volume of the plates. The method comprises recirculating liquefied gas to improve cooling efficiency while lowering operation costs. The system and method further provide for integrated measurement and control of the flow of liquefied gas through the primary components of the system. In one embodiment, the forms are rubber cylinders utilized in the production of torsion axles.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: November 25, 2014
    Assignee: Air Liquide Industrial U.S. LP
    Inventor: David C. Braithwaite
  • Patent number: 8887795
    Abstract: There is provided a heat exchanger and a water heater having the heat exchanger including a uniform thickness of tin plating layer on the inner surface of a water feeding pipe. The heat exchanger H includes copper pipes 8 and 10 disposed in a casing 1 as a water feeding pipe 4 and a turbulent flow generator 13 disposed in the copper pipes 8 and 10. The turbulent flow generator 13 has a copper plating layer 14 on the surface portion thereof. The tin plating layers 17 and 18 are disposed on the inner surface of the copper pipes 8 and 10 and the surface of the turbulent flow generator 13.
    Type: Grant
    Filed: December 29, 2009
    Date of Patent: November 18, 2014
    Assignee: Rinnai Corporation
    Inventors: Masayuki Toda, Akira Kumagai, Hiromitsu Sasada
  • Patent number: 8881541
    Abstract: A cooling system has a tandem compressor, a condenser, an electronic expansion valve and an evaporator arranged in a direct expansion cooling circuit. The tandem compressor includes a variable capacity compressor and a fixed capacity compressor. A controller controls the electronic expansion valve and selects which of a plurality of superheat control modes to use in operating the electronic expansion valve based on control parameters and a current operating status of each of the variable capacity compressor and fixed capacity compressor of the tandem compressor.
    Type: Grant
    Filed: April 13, 2012
    Date of Patent: November 11, 2014
    Assignee: Liebert Corporation
    Inventors: Roger Noll, Gary A. Helmink, Pierpaolo Barbato, Giuseppe Dalla Mana, Lou Monnier
  • Patent number: 8875522
    Abstract: A magnetic heat pump apparatus includes: a container defining a work chamber; a magnetic working element arranged in the work chamber; a magnetic-field applier that alternately applies a magnetic field to the magnetic working element and removes the magnetic field from the magnetic working element in a magnetic-field direction; and a transportation device that transports heat medium to reciprocate in a reciprocation direction. The magnetic-field direction and the reciprocation direction intersect with each other. The magnetic working element is one of a plurality of magnetic working elements. Each of the plurality of magnetic working elements has a column shape extending in the magnetic-field direction.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: November 4, 2014
    Assignee: Denso Corporation
    Inventors: Naoki Watanabe, Tsuyoshi Morimoto, Shinichi Yatsuzuka
  • Patent number: 8869554
    Abstract: Gas treatment equipment includes a compressor which compresses process gas, a first process module which is disposed downstream of the compressor and which treats the process gas, an expander which is disposed downstream of the first process module and which expands the process gas to obtain power, a second process module which is disposed downstream of the expander and which treats the process gas, and a driver which drives the compressor. A first pressure indicator is disposed at an inlet of the compressor for the process gas and measures a pressure of the process gas, and a second pressure indicator is disposed at an outlet of the second process module for the process gas and measures a pressure of the process gas. A recirculation flow path is connected to both of the outlet of the second process module for the process gas and the inlet of the compressor.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: October 28, 2014
    Assignee: Mitsubishi Heavy Industries Compressor Corporation
    Inventors: Kazuhiro Takeda, Yosuke Nakagawa, Tomoaki Takeda, Yasushi Mori
  • Patent number: 8863537
    Abstract: A refrigeration appliance has a cabinet having a first compartment, a second separate compartment and a refrigeration system including a compressor, an evaporator and a condenser. The evaporator is associated with the first compartment to lower a temperature of the first compartment air. A heat exchanger is exposed to the temperature of the first compartment and has a surface area exposed to second compartment air. An air moving device is associated with the second compartment to direct a flow of second compartment air over the heat exchanger surface area and circulate the second compartment air within the second compartment. The cabinet, compartments and heat exchanger are configured such that first compartment air is completely isolated from second compartment air.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: October 21, 2014
    Assignee: Whirlpool Corporation
    Inventor: Brent A. Junge
  • Patent number: 8863494
    Abstract: A turbine outlet frozen gas capture apparatus is provided and includes an enclosure divided into first and second chambers, the first chamber being receptive of turbine outlet exhaust including frozen gas, a wheel disposed and configured to be rotatable such that frozen gas received in the first chamber is captured and transported into the second chamber and a heater disposed within the second chamber and configured to vaporize the frozen gas transported therein to thereby produce vaporized gas.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: October 21, 2014
    Assignee: Hamilton Sundstrand Space Systems International, Inc.
    Inventor: James H. Fort
  • Patent number: 8857204
    Abstract: A computer server enclosure (such as in a server farm) evaporative cooling system. The system includes multiple cooling towers and includes cooling coil heat transfer equipment locally associated with a server enclosure or group of server enclosures, with the system subject to command and control equipment.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: October 14, 2014
    Assignee: R4 Ventures LLC
    Inventor: Mikhail Pavlovich Reytblat