Patents Examined by Amy E Juedes
  • Patent number: 11564944
    Abstract: Contemplated compositions and methods generate a durable immune synapse and so lead to activated T-cells and memory T-cell formation by use of selected co-stimulatory receptors and their ligands in conjunction with selected neoepitopes. Moreover, immune competent cells are attracted into a tumor microenvironment after activation of the T-cells using hybrid or chimeric binding proteins that comprise a chemokine portion and that target components of necrotic cells.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: January 31, 2023
    Assignee: Nant Holdings IP, LLC
    Inventor: Patrick Soon-Shiong
  • Patent number: 11566077
    Abstract: Provided herein are compositions and methods for detecting and/or targeting dysfunctional tumor antigen-specific CD8+ T cells in the tumor microenvironment for diagnostic, therapeutic and/or research applications. In particular, dysfunctional tumor antigen-specific CD8+ T cells are detected and/or targeted via their expression of cell surface receptors described herein, such as 4-1BB, LAG-3, or additional markers that correlate with 4-1BB and LAG-3 expression, such as markers differentially expressed on the surface of the T cells.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: January 31, 2023
    Assignee: The University of Chicago
    Inventors: Thomas Gajewski, Jason Williams, Brendan Horton
  • Patent number: 11566222
    Abstract: A method for expanding a population of ?? T-cells is provided in which isolated activated Peripheral Blood Mononuclear Cells (PBMCs) are cultured in a medium comprising transforming growth factor beta (TGF-?) under conditions in which the production of effector ?? T-cells having therapeutic activity against malignant disease is favored. The use of TGF-? in the production of effector cells in particular V?9V?2 T-cells is also described and claimed.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: January 31, 2023
    Assignee: KING'S COLLEGE LONDON
    Inventors: John Maher, Ana Catarina Parente Pereira Puri, Richard Esmond Beatson
  • Patent number: 11566072
    Abstract: The present invention relates, in part, to agents that bind CD8 and their use as therapeutic and diagnostic agents. The present invention further relates to pharmaceutical compositions comprising the CD8 binding agents and their use in the treatment of various diseases, including, for example, cancers.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: January 31, 2023
    Assignees: Orionis Biosciences, Inc., Orionis Biosciences BV
    Inventors: Nikolai Kley, Jan Tavernier, Lennart Zabeau, Erik Depla
  • Patent number: 11566078
    Abstract: This invention relates generally to molecules that specifically engage 41BB, a member of the TNF receptor superfamily (TNFRSF). More specifically, this invention relates to multivalent and multispecific molecules that bind at least 41BB.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: January 31, 2023
    Assignee: Inhibrx, Inc.
    Inventors: Brendan P. Eckelman, John C. Timmer, Chelsie Macedo, Kyle S. Jones, Abrahim Hussain, Amir S. Razai, Bryan Becklund, Rajay Pandit, Mike Kaplan, Lucas Rascon, Quinn Deveraux
  • Patent number: 11547727
    Abstract: Provided are NK-92 cells expressing a chimeric antigen receptor (CAR). The CAR can comprise an intracellular domain of Fc?RI?. Also described are methods for treating a patient having or suspected of having a disease that is treatable with NK-92 cells, such as cancer or a viral infection, comprising administering to the patient NK-92-CAR cells.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: January 10, 2023
    Assignee: ImmunityBio, Inc.
    Inventors: Laurent H. Boissel, Hans G. Klingemann
  • Patent number: 11534496
    Abstract: This disclosure provides methods and compositions for detecting Tph cells and/or reducing the number (or frequency) and/or activity of such cells in order to provide therapeutic benefit to a subject having or at risk of developing an autoantibody-associated condition such as an autoantibody-associated autoimmune disease.
    Type: Grant
    Filed: December 6, 2016
    Date of Patent: December 27, 2022
    Assignee: The Brigham and Women's Hospital, Inc.
    Inventors: Michael B. Brenner, Deepak A. Rao
  • Patent number: 11534461
    Abstract: The present disclosure provides binding proteins and TCRs with high affinity and specificity against Merkel cell polyomavirus T antigen epitopes or peptides, T cells expressing such high affinity Merkel cell polyomavirus T antigen specific TCRs, nucleic acids encoding the same, and compositions for use in treating Merkel cell carcinoma.
    Type: Grant
    Filed: November 14, 2017
    Date of Patent: December 27, 2022
    Assignees: FRED HUTCHINSON CANCER CENTER, UNIVERSITY OF WASHINGTON
    Inventors: Aude G. Chapuis, Paul T. Nghiem, Megan S. McAfee, Natalie J. Miller, Kelly Garneski Paulson, David Martin Koelle, Thomas M. Schmitt, Candice Church
  • Patent number: 11525004
    Abstract: Disclosed are compositions and methods for targeted treatment of CD123-expressing cancers. In particular, recombinant antibodies are disclosed that are able to engage T-cells to destroy CD123-expressing malignant cells.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: December 13, 2022
    Assignee: H. Lee Moffitt Cancer Center and Research Institute, Inc.
    Inventor: Marco L. Davila
  • Patent number: 11510966
    Abstract: The present invention relates to methods of preventing and/or treating necrotizing enterocolitis or other intestinal inflammations using an IL-22, a dimer or a multimer thereof.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: November 29, 2022
    Assignees: Evive Biotechnology (Shanghai) Ltd, University Of Pittsburgh—Of The Commonwealth System Of Higher Education
    Inventors: Jay Kennedy Kolls, Misty Lynn Good, Xiaoqiang Yan
  • Patent number: 11512139
    Abstract: The present invention provides a chimeric antigen receptor (CAR), comprising an extracellular part, at least one intracellular signaling domain, and at least one transmembrane domain, wherein the extracellular part of said CAR comprises a) at least one antigen binding domain, and b) at least one cytokine receptor activating or blocking domain. The invention also provides isolated nucleic acid molecule(s) encoding for the said CAR, a cell comprising said nucleic acid molecule(s), a cell expressing said CAR and therapeutic uses of said CAR.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: November 29, 2022
    Assignee: Miltenyi Biotec B.V. & Co. KG
    Inventors: Hinrich Abken, Andreas Hombach
  • Patent number: 11504397
    Abstract: The present disclosure is directed to compositions and methods to treat the inflammatory response present in certain diseases and illnesses by modifying a dysregulation of one or more genes associated with the Wnt/?-catenin signaling pathway. Embodiments of the disclosure can provide methods for treating an inflammatory response in a patient by identifying the inflammatory response and modifying the inflammatory response.
    Type: Grant
    Filed: December 4, 2019
    Date of Patent: November 22, 2022
    Assignee: University of South Carolina
    Inventors: Marpe Bam, Prakash Nagarkatti, Mitzi Nagarkatti
  • Patent number: 11497768
    Abstract: CAR-T cells for cancer therapy are provided with an antibody that recognizes the MAGE-A4-derived-peptide/HLA-A2 complex. The antibody includes the VH amino acid sequence of SEQ ID NO: 36 and the VL amino acid sequence of SEQ ID NO: 38. The antibody preferably is provided with the amino acid sequence of SEQ ID NO: 32. Such CAR-T cells can be used in CAR infusion therapy in which a cancer-specific intracellular antigen is used.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: November 15, 2022
    Assignee: MIE UNIVERSITY
    Inventors: Hiroshi Shiku, Yasushi Akahori, Yuya Kato, Yoshihiro Miyahara
  • Patent number: 11484552
    Abstract: The present invention provides compositions and methods for inducing a CAR mediated trans-signal in a T cell. The trans-signaling CAR T cells comprise a first CAR having a first signaling module and a second CAR having a distinct second signaling module. The present invention also provides cells comprising a plurality of types of CARs, wherein the plurality of types of CARs participate in trans-signaling to induce T cell activation.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: November 1, 2022
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Daniel J. Powell, Jr., Carl H. June
  • Patent number: 11478538
    Abstract: The invention relates to an immunogenic compound comprising an antigenic peptide having amino acid similarity with a tumor antigen, which antigenic peptide is selected in the group consisting of peptides having amino acid similarity with IL13RA2, the said antigenic peptide being selected in the group consisting of sequences described in the specification.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: October 25, 2022
    Assignee: ENTEROME S.A.
    Inventors: Laurent Chene, Alban Mathieu, Matthieu Pichaud
  • Patent number: 11479598
    Abstract: Antibodies and antigen-binding fragments thereof specific to the YFV E protein and with neutralizing potency against YFV are provided. These antibodies and antigen-binding fragments are useful in treating YFV.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: October 25, 2022
    Assignee: Mabloc, Inc.
    Inventors: Anna Wec, Laura Walker
  • Patent number: 11466070
    Abstract: The present invention provides a chimeric antigen receptor (CAR) system comprising; (i) a receptor component comprising a antigen binding domain and a first binding domain; and (ii) a signalling component comprising a signalling domain and a second binding domain which binds the single domain binder of the first binding domain of the receptor component wherein either the first or second binding domains comprise a single domain binder, and wherein, binding of the first and second binding domains is disrupted by the presence of an agent, such that in the absence of the agent, the receptor component and the signalling component heterodimerize and binding of the antigen binding domain to antigen results in signalling through the signalling domain; whereas in the presence of the agent, the receptor component and the signalling component do not heterodimerize and binding of the antigen binding domain to antigen does not result in signalling through the signalling domain.
    Type: Grant
    Filed: February 10, 2017
    Date of Patent: October 11, 2022
    Assignee: AUTOLUS LIMITED
    Inventors: Martin Pulé, Shaun Cordoba, Simon Thomas, Shimobi Onuoha, Maria Stavrou
  • Patent number: 11466289
    Abstract: The invention relates to dendritic cells, the NF?B signaling pathway of which has been manipulated by RNA transfection, to the manufacture thereof and to use thereof.
    Type: Grant
    Filed: December 4, 2017
    Date of Patent: October 11, 2022
    Inventors: Katrin Birkholz, Jan Dörrie, Niels Schaft, Gerold Schuler, Reinhard Voll, Isabell Pfeiffer
  • Patent number: 11459543
    Abstract: The invention provides a recombinant chimeric antigen receptor (CAR) gene, a vector containing the same, a CAR-T cell and a use thereof. The recombinant CAR gene comprises a nucleic acid sequence encoding an antigen-binding portion of a CD30 antibody, a transmembrane portion and a CD137 cytoplasmic functional region and a CD3zeta cytoplasmic functional region linked in any order; also provides a method of treating Hodgkin's lymphoma or anaplastic large cell lymphoma or other CD30-positive tumors using the CAR-T cells of the invention.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: October 4, 2022
    Assignee: YIMING (BEIJING) CELL BIOTECH LTD.
    Inventor: Xiulian Sun
  • Patent number: 11447556
    Abstract: Provided herein are VHH-containing polypeptides that bind OX40. In some embodiments, VHH-containing polypeptides that bind and agonize OX40 are provided. Uses of the VHH-containing polypeptides are also provided.
    Type: Grant
    Filed: August 12, 2019
    Date of Patent: September 20, 2022
    Assignee: Inhibex, Inc.
    Inventors: John C. Timmer, William Crago, Kyle Jones, Katelyn Willis, Florian Sulzmaier, Bryan Becklund, Brendan P. Eckelman