Patents Examined by Andrew Thanh Bui
  • Patent number: 11572802
    Abstract: A steam turbine having a steam supplementing structure and an operating method therefor. The steam turbine includes an outer casing and an inner casing, a rotor having a thrust balancing piston, the rotor being rotatably mounted inside the inner casing; and a steam flow channel formed between the inner casing and the rotor. Impeller blades fitted with the rotor and a plurality of guide blades fitted with the inner casing are alternately arranged to form multiple stages of blade groups. Steam is fed from the steam throughflow downstream of a first designated blade staging in multiple stages of blade groups to a thrust balancing piston chamber disposed between the inner casing and the thrust balancing piston of the rotor. An interlayer for the steam to circulate is formed between the inner casing and the outer casing, the interlayer including a supplemental steam chamber which can receive the steam from a sealed chamber between the rotor and the inner casing.
    Type: Grant
    Filed: April 2, 2019
    Date of Patent: February 7, 2023
    Assignee: SHANGHAI ELECTRIC POWER GENERATION EQUIPMENT CO., ETD.
    Inventors: Yifeng Hu, Gang Chen, Xingzhu Ye, Kai Cheng
  • Patent number: 11572797
    Abstract: A turbine rotor in an embodiment includes: a rotor body portion; and a plurality of turbine disks provided on the rotor body portion in a center axis direction of the rotor body portion. The turbine rotor includes: a high-pressure cooling passage formed in the rotor body portion, the high-pressure cooling passage to which a high-pressure cooling medium is supplied, and the high-pressure cooling passage that discharges the high-pressure cooling medium to the high-pressure side turbine stage; and a low-pressure cooling passage formed in the rotor body portion, the low-pressure cooling passage to which a low-pressure cooling medium whose pressure is lower than the pressure of the high-pressure cooling medium is supplied, and the low-pressure cooling passage that discharges the low-pressure cooling medium to the low-pressure side turbine stage.
    Type: Grant
    Filed: June 14, 2021
    Date of Patent: February 7, 2023
    Assignee: TOSHIBA ENERGY SYSTEMS & SOLUTIONS CORPORATION
    Inventors: Takahiro Ono, Tsuguhisa Tashima, Shogo Iwai, Masao Itoh
  • Patent number: 11572864
    Abstract: A method for controlling an inclination of a floating wind turbine platform to optimize power production, or to reduce loads on the turbine, tower, and platform, or both, includes receiving data associated with the inclination of the floating wind turbine platform and wind speed and direction data. An angle of difference between the turbine blade plane and the wind direction is determined, where the angle of difference has a vertical component. A platform ballast system is then caused to distribute ballast to reduce the vertical component to a target angle chosen to optimize power production, or reduce turbine, tower, and platform loads, or both.
    Type: Grant
    Filed: December 28, 2021
    Date of Patent: February 7, 2023
    Assignee: Principle Power, Inc.
    Inventors: Pauline Louazel, Bingbin Yu, Sam Kanner, Antoine Peiffer, Dominique Roddier
  • Patent number: 11555411
    Abstract: The present technique presents a blade 1 for a gas turbine 10. The blade 1 includes an airfoil 100 having an airfoil tip part 100a and a pressure side 102 and a suction side 104 meeting at a leading edge 106 and a trailing edge 108 and defining an internal space 100s of the airfoil 100. A squealer tip 80, 90 is arranged at the airfoil tip part 100a. The squealer tip 80, 90 comprises a suction side rail 90. The suction side rail 90 comprises a chamfer part 90x and at least one squealer tip cooling hole 99. The chamfer part 90x comprises a chamfer surface 9. An outlet 99a of the at least one squealer tip cooling hole 99 is disposed at the chamfer surface 9.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: January 17, 2023
    Assignee: DOOSAN ENERBILITY CO., LTD.
    Inventors: Herbert Brandl, Joerg Krueckels, Ulrich Rathmann, Willy Heinz Hofmann
  • Patent number: 11536141
    Abstract: A turbine vane for a gas turbine engine has an airfoil including leading and trailing edges joined by spaced-apart pressure and suction sides to provide an external airfoil surface. The surface is formed in substantial conformance with multiple cross-sectional profiles of the airfoil defined by a set of Cartesian coordinates set forth in Table 1, the Cartesian coordinates provided by an axial coordinate scaled by a local axial chord, a circumferential coordinate scaled by a local axial chord, and a span location.
    Type: Grant
    Filed: February 4, 2022
    Date of Patent: December 27, 2022
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Mohammed Ennacer, Panagiota Tsifourdaris, Remo Marini, Niloofar Moradi, Daniel Lecuyer, Patricia Phutthavong, Farzad Ashrafi
  • Patent number: 11535369
    Abstract: A propeller assembly includes propeller blades that self-fold when not in use, which reduces the overall footprint of the propeller assembly and enables efficient storage. During flying conditions, the propeller blades unfold and extend to a flight configuration that enables the generation of lift on the propeller blades and consequently to an attached aerial vehicle. In various embodiments, the transitioning of the propeller blades between a flight and folded configuration may be enabled by torsion springs coupled to each propeller blade. For example, the torsion springs cause each propeller blade to rotate and self-fold when no external forces are applied. Alternatively, during flying conditions, centrifugal forces that arise as the propeller assembly rotates counteract the torsion springs, enabling each propeller blade to achieve an extended flight configuration. Therefore, the propeller blades of the propeller assembly are optimally oriented without the need for human intervention.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: December 27, 2022
    Assignee: GoPro, Inc.
    Inventor: Ryan Goldstein
  • Patent number: 11519421
    Abstract: A wind wheel including a first air plate, a second air plate, and a plurality of blades disposed between the first air plate and the second air plate. The first air plate includes a central part and an air inlet disposed in the central part; each two adjacent blades form an air duct. The plurality of blades each includes an inlet section next to the air inlet, an intermediate section, and an outlet section. The thickness of the intermediate section is greater than the thickness of the inlet section and the thickness of the outlet section.
    Type: Grant
    Filed: July 4, 2019
    Date of Patent: December 6, 2022
    Assignee: ZHONGSHAN BROAD-OCEAN MOTOR CO., LTD.
    Inventors: Yanhu Lin, Miao Zhang, Yong Lin, Baixian Xiao
  • Patent number: 11480056
    Abstract: An airfoil profile for a turbine blade of a gas turbine is provided. The turbine blade may include an airfoil portion having an uncoated nominal profile substantially in accordance with Cartesian coordinate values of X, Y, and Z set forth in Table 1, wherein the X, Y, and Z coordinates are distances in inches measured in a Cartesian coordinate system, the corresponding X and Y coordinates, when connected by a smooth continuous arc, define one of a plurality of airfoil profile sections at each Z distance, and the plurality of airfoil profile sections, when joined together by smooth continuous arcs, define an airfoil shape.
    Type: Grant
    Filed: July 1, 2021
    Date of Patent: October 25, 2022
    Inventors: Jinuk Kim, Kwangil Kim, Barry Brown, Jeff Greenberg, Andres Jaramillo, Clint Mayer
  • Patent number: 11473450
    Abstract: A system (10) includes a modular exhaust collector (30) configured to be arranged in a first orientation (50) or a second orientation (114, 116). The modular exhaust collector (30) is configured to receive an exhaust flow along an inlet axis (54), to direct the exhaust flow along a first direction (36) through an outlet (58) when in the first orientation (50), and to direct the exhaust flow along a second direction (114, 116) through the outlet (58) when in the second orientation (114, 116). The modular exhaust collector (30) includes an exhaust passage (64) to receive the exhaust flow, a plurality of compressor discharge (CD) ports (72), a plurality of flow ports (76), a bottom face (84) opposite the outlet (58) with a first drain (88), and a first side wall (82) with a second drain (88) between the bottom face (84) and the outlet (58).
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: October 18, 2022
    Assignee: General Electric Company
    Inventors: Jorge Mario Rochin Machado, Paul Roberts Scarboro, Jordan Scott Warton, Michael Anthony Acosta, Ashish Agrawal, Miroslaw Pawel Babiuch
  • Patent number: 11459897
    Abstract: Airfoils for gas turbine engines are described. The airfoils include a leading edge, a trailing edge, a pressure side exterior wall, and a suction side exterior wall. A plurality of cooling passages are formed within the airfoil. A plurality of first interior ribs extend from the pressure side exterior wall to the suction side exterior wall, and a plurality of second interior ribs extend from the suction side exterior wall toward the pressure side exterior wall and intersect with a first interior rib. At least one pressure side main body cooling passage is defined between the pressure side exterior wall and two first interior ribs of the plurality of first interior ribs and at least one suction side main body cooling passage is defined between the suction side exterior wall, a first interior rib, and a second interior rib.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: October 4, 2022
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventors: Brandon W. Spangler, Dominic J. Mongillo, Jr.
  • Patent number: 11454127
    Abstract: A vane configured to be disposed in a gas path defined in part by an inner surface of a case of a gas turbine engine is provided. The vane comprises a vane body configured to extend through an aperture in the case and a vane head disposed at an end of the vane body. The vane head has an abutting surface configured to contact an outer surface of the case when the vane body extends through the aperture, and a groove configured to receive a sealing member. The groove opens to the abutting surface and is outwardly open relative to an inner region surrounded by the groove. The groove has an inner seating surface that hinders movement of the sealing member toward the abutting surface and can facilitate installation of the vane in the engine.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: September 27, 2022
    Assignee: PRATT & WHITNEY CANADA CORP.
    Inventors: Tammy Yam, Tibor Urac, Paul Aitchison
  • Patent number: 11454133
    Abstract: An embodiment of an independent cooling circuit for selectively delivering cooling fluid to a component of a gas turbine system includes: a plurality of independent circuits of cooling channels embedded within an exterior wall of the component, wherein the plurality of circuits of cooling channels are interwoven together; an impingement plate; and a plurality of feed tubes connecting the impingement plate to the exterior wall of the component and fluidly coupling each of the plurality of circuits of cooling channels to at least one supply of cooling fluid, wherein, in each of the plurality of circuits of cooling channels, the cooling fluid flows through the plurality of feed tubes into the circuit of cooling channels only in response to a formation of a breach in the exterior wall of the component that exposes at least one of the cooling channels of the circuit of cooling channels.
    Type: Grant
    Filed: October 25, 2019
    Date of Patent: September 27, 2022
    Assignee: General Electric Company
    Inventors: Matthew Troy Hafner, Brad Wilson VanTassel, Christopher Donald Porter, Srikanth Chandrudu Kottilingam
  • Patent number: 11454208
    Abstract: A pultruded fibrous composite strip, a spar cap made from such strips, a wind turbine rotor blade having such a spar cap and a method for making a spar cap from such strips is provided. The strip is stacked with similar strips to form the spar cap. The strip has a substantially constant cross-section defined by first and second mutually opposed and longitudinally extending sides, and by first and second longitudinal edges. The first and the second sides include first and second abutment surfaces, respectively. The first and the second abutment surfaces are non-planar. When the strip is stacked with similar strips, and subsequently integrated within shell of the wind turbine blade, the non-planar profile of the strips at least partially obviates formation of resin rich pockets at the interface of the spar cap and the shell and/or stress concentration between the edges of the spar cap and the shell.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: September 27, 2022
    Inventors: Donato Girolamo, Jens Jørgen Østergaard Kristensen, Michael Noerlem
  • Patent number: 11454124
    Abstract: An airfoil includes an airfoil wall that defines a leading end, a trailing end, a first side, and a second side. Radially-extending ribs partition the interior cavity of the airfoil into first and second cooling channels and a radial cooling passage that is situated between the first and second cooling channels. The cooling channels extend to respective first and second channel ends. A turn channel connects the first and second channel ends. The turn channel splits at the first channel end into first and second channel legs such that there is a region between the first and second channel legs. The channels legs merge at the second channel end. The radial cooling passage extends through the region between the first and second channel legs.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: September 27, 2022
    Assignee: RAYTHEON TECHNOLOGIES CORPORATION
    Inventor: Brandon W. Spangler
  • Patent number: 11440655
    Abstract: A device for controlling thrust vectoring of a cyclorotor includes a control cam positionable relative to a drive shaft of a cyclorotor along each of a first axis and a second axis, where the drive shaft is rotatable about a third axis. The device may further include a frame having a plurality of sides, where the frame is disposed at least partly around the drive shaft of the cyclorotor, a first positioning assembly disposed on a first side of the frame, where the first positioning assembly is structurally configured to move the frame along the first axis, and a second positioning assembly disposed on a second side of the frame, where the second positioning assembly is engaged with the control cam and structurally configured to move the control cam relative to the frame along the second axis.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: September 13, 2022
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventor: Zachary H. Adams
  • Patent number: 11441427
    Abstract: A rotor blade includes an airfoil having an airfoil shape. The airfoil shape has a nominal profile substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in Table I. The Cartesian coordinate values of X, Y and Z are non-dimensional values from 0% to 100% convertible to dimensional distances expressed in a unit of distance by multiplying the Cartesian coordinate values of X, Y and Z by a scaling factor of the airfoil in the unit of distance. The X and Y values, when connected by smooth continuing arcs, define airfoil profile sections at each Z value. The airfoil profile sections at Z values are joined smoothly with one another to form a complete airfoil shape.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: September 13, 2022
    Assignee: General Electric Company
    Inventors: Paul G. Deivernois, Andrew Clifford Hart, Michael James Dutka, Jeremy Peter Latimer
  • Patent number: 11434775
    Abstract: An assembly adapted for use with a gas turbine engine includes a static component and a metering band. The static component is fixed relative to an axis. The metering band is arranged to extend circumferentially at least partway about the axis and is coupled with the static component. The metering band defines at least a portion of a cooling passageway for air to flow through.
    Type: Grant
    Filed: August 31, 2020
    Date of Patent: September 6, 2022
    Assignee: Rolls-Royce North American Technologies Inc.
    Inventors: Brandon R. Snyder, Jonathan S. Sands
  • Patent number: 11434776
    Abstract: A turbine module (100) for a heat engine (104) wherein the turbine module (100) defines a working fluid flow duct (60) between a turbine module inlet (110) and a turbine module outlet (114) configured to expand a working fluid as the working fluid passes along the working fluid flow duct (60). The turbine module comprises a first heat exchanger (37) and a turbine rotor stage (24) each provided in the working fluid flow duct (60). The first heat exchanger (37) is provided in flow series between the turbine module inlet (110) and the turbine rotor stage (24); and the turbine stage (24) is provided in flow series between the first heat exchanger (37) and the turbine module outlet (114). The first heat exchanger (37) defined by a wall (126) having an external surface (182) which is located in the working fluid flow duct (60).
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: September 6, 2022
    Assignee: BAE SYSTEMS PLC
    Inventor: James William Spain
  • Patent number: 11421537
    Abstract: A turbine engine vane including a blade extending following a radial axis and a cooling circuit arranged inside the blade, the cooling circuit including a first cavity and a second cavity arranged downstream from the first cavity following a direction of circulation of a cooling fluid, the first and second cavities extend radially inside the blade and being separated at least partially by a radial partition having a radially external free end which delimits at least partially a passage connecting the first and second cavities, the radial partition connecting a first wall in contact with the outside environment of the blade to a second opposite wall substantially following a transversal axis, perpendicular to the radial axis, respectively in a connection zone. According to the invention, at least one connection zone presents a thickening having a substantially triangular general transversal cross-section.
    Type: Grant
    Filed: March 19, 2020
    Date of Patent: August 23, 2022
    Assignees: SAFRAN AIRCRAFT ENGINES, SAFRAN
    Inventors: Jeremy Jacques Attilio Fanelli, Romain Pierre Cariou, Thomas Olivier Michel Pierre De Rocquigny, Ba-Phuc Tang
  • Patent number: 11408305
    Abstract: The invention relates to a lubrication device (1) for a turbo machine, comprising: a rotor (2) rotating around an axis, at least one lubrication chamber (6) formed in the rotor (2), a stator (22) in which the rotor (2) is rotatably mounted, a bearing (11) for rotationally guiding the rotor (2), mounted between the rotor (2) and the stator, lubricating fluid supply means which supply at least the chamber (6) and the bearing (11), the lubricating fluid supply means comprising a nozzle (23) mounted on the stator provided with an ejection nozzle (34) at a free end of the nozzle (23), said nozzle (34) being configured to project the lubricating fluid into the chamber (6), characterized in that the nozzle (23) has a movable part (27) including said ejection nozzle (34), said movable part (27) being movable between a retracted position in which the ejection nozzle (34) is remote from the chamber (6) or at least partially located outside the chamber (6), and an extended position in which the nozzle (34) is closer
    Type: Grant
    Filed: April 26, 2019
    Date of Patent: August 9, 2022
    Assignee: SAFRAN AIRCRAFT ENGINES
    Inventors: Fabien Stéphane Garnier, François Pierre Michel Comte, Arnaud Lasantha Genilier, Vincent François Georges Millier