Patents Examined by Benny Lee
  • Patent number: 10403952
    Abstract: A surface wave launcher for launching electromagnetic surface waves, the launcher comprising: a waveguide comprising a planar conductive layer; a feed structure comprising a first conductor, the first conductor coupled to the waveguide at a coupling; wherein the waveguide is arranged to be positioned adjacent to a surface suitable for guiding electromagnetic surface waves; and wherein the planar conductive layer comprises one or more slots each having a pair of longitudinal edge, the one or more slots extending through the conductive layer and arranged such that an axis radially extending from the coupling intersects each pair of longitudinal edges of the one or more slots.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: September 3, 2019
    Assignee: Roke Manor Research Limited
    Inventor: Michael Jessup
  • Patent number: 10361471
    Abstract: Structures and methods for interconnects and associated alignment and assembly mechanisms for and between chips, components, and 3D systems.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: July 23, 2019
    Assignee: NUVOTRONICS, INC
    Inventors: Jean-Marc Rollin, J. Robert Reid, David Sherrer, Will Stacy, Ken Vanhille, J. Marcus Oliver, Tim Smith
  • Patent number: 10276909
    Abstract: A structure can include a first element and a carrier bonded to the first element along an interface. A waveguide can be defined at least in part along the interface between the first element and the carrier. The waveguide can comprise an effectively closed metallic channel and a dielectric material within the effectively closed metallic channel, as viewed from a side cross-section of the structure. Various millimeter-wave or sub-terahertz components or circuit structures can also be created based on the waveguide structures disclosed herein.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: April 30, 2019
    Assignee: Invensas Bonding Technologies, Inc.
    Inventors: Shaowu Huang, Javier A. DeLaCruz, Belgacem Haba
  • Patent number: 10270145
    Abstract: A technique is presented to extract electromagnetic radiation from a dielectric loaded waveguide consisting of a layer or layers of dielectric material enclosed in a metallic conducting jacket. The electromagnetic radiation generated in the dielectric waveguide by a charged particle beam or otherwise generated as input to the waveguide. Dielectric loaded waveguides used for generation (or transport) of electromagnetic radiation at frequencies above 100 GHz have dimensions in the sub-mm range. Due to difficulty in the fabrication of a conventional broadband horn-like antenna to extract electromagnetic radiation from the structure because of the large impedance mismatch between the dielectric loaded waveguide and free space, the designing and fabricating aperture of antennas are formed as part of the dielectric waveguide and utilizes an angle cut or a set of apertures machined into the dielectric loaded waveguide to ensure broadband power extraction with minimal return loss and high directivity.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: April 23, 2019
    Assignee: EUCLID TECH LABS, LLC
    Inventors: Sergey Antipov, Chunuang Jing, Roman Kostin, Jiaqu Qiu, Dan Wang, Alexei Kanareykin, Stanislauv Baturin, Sergey Baryshev
  • Patent number: 10263312
    Abstract: A method of making a waveguide ribbon that includes a plurality of waveguides comprises joining a first sheet of dielectric material to a first conductive sheet of conductive material, patterning the first sheet of dielectric material to form a plurality of dielectric waveguide cores on the first conductive sheet, and coating the dielectric waveguide cores with substantially the same conductive material as the conductive sheet to form the plurality of waveguides.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: April 16, 2019
    Assignee: Intel Corporation
    Inventors: Sasha N. Oster, Aleksandar Aleksov, Georgios C. Dogiamis, Telesphor Kamgaing, Adel A. Elsherbini, Shawna M. Liff, Johanna M. Swan, Brandon M. Rawlings, Richard J. Dischler
  • Patent number: 10249925
    Abstract: An apparatus comprises a plurality of waveguides, wherein the waveguides include a dielectric material; an outer shell; and a supporting feature within the outer shell, wherein the waveguides are arranged separate from each other within the outer shell by the supporting feature.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: April 2, 2019
    Assignee: Intel Corporation
    Inventors: Georgios C. Dogiamis, Sasha N. Oster, Telesphor Kamgaing, Adel A. Elsherbini, Johanna M. Swan, Shawna M. Liff, Aleksandar Aleksov, Brandon M. Rawlings, Richard J. Dischler
  • Patent number: 10229807
    Abstract: The present invention is a rectangular waveguide providing amplification of an electromagnetic wave via interaction with an electron beam in a linear interaction channel where the electron beam enters the waveguide at a first curved part of the waveguide, traverses the linear interaction channel and exits the waveguide at a second curved part of the waveguide.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: March 12, 2019
    Assignee: Lancaster University Business Enterprises Limited
    Inventors: Claudio Paoloni, Mauro Mineo
  • Patent number: 10224903
    Abstract: A method includes receiving a series of radio frequency (RF) signals, where, from RF signal to RF signal of the series of RF signals, a carrier frequency is changed in accordance with a frequency hopping pattern. The method further includes, while receiving the series of RF signals, sensing an environmental condition by, for a frequency hop of at least some frequency hops of the frequency hopping pattern, adjusting a characteristic of a wireless sensor to maintain proximal alignment of a resonant frequency of the wireless sensor with the carrier frequency corresponding to a present frequency of the at least some frequency hops and generating a value to represent the adjustment of the characteristic, where a set of values is generated for the at least some frequency hops and where the set of values is used to determine a sensed value of the environmental condition.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: March 5, 2019
    Assignee: RFMicron, Inc.
    Inventors: Shahriar Rokhsaz, Greg Pitner
  • Patent number: 10218079
    Abstract: Periodic structure assemblies are provided. An example assembly includes: a dielectric layer having a top and a bottom; a first frequency selective layer disposed on the top of the dielectric layer, the first frequency selective layer having a plurality of electrically conductive elements arranged as a first periodic structure; and a second frequency selective layer disposed on the bottom of the dielectric layer, the second frequency selective layer having a plurality of electrically conductive elements arranged as a second periodic structure. Another periodic structure assembly includes: a substrate; and an array of periodic elements defined by a contiguous trace of conductive material supported by the substrate, each of the periodic elements exhibiting side walls, with each of the side walls having an inwardly extending protrusion.
    Type: Grant
    Filed: April 3, 2017
    Date of Patent: February 26, 2019
    Assignee: VENTI GROUP, LLC
    Inventors: Phillip Lindsey, Dow A. Eichenlaub
  • Patent number: 10211799
    Abstract: A high-frequency filter (10) includes a first input-output terminal (P1), a second input-output terminal (P2), a variable frequency filter (20), and a fixed frequency filter (30). The variable frequency filter (20) and the fixed frequency filter (30) are connected in series and coupled between the first input-output terminal (P1) and the second input-output terminal (P2). The variable frequency filter (20) is a filter capable of varying a passband and an attenuation band. The fixed frequency filter (30) is a filter having a fixed passband and a fixed attenuation band. The passband of the fixed frequency filter (30) is set so as to be at least partially overlapped with multiple passbands realized by the fixed frequency filter (30).
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: February 19, 2019
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Masakazu Tani
  • Patent number: 10211798
    Abstract: Techniques relate to an on-chip Josephson parametric converter. A Josephson ring modulator includes four nodes. A lossless on-chip flux line is capacitively coupled to two adjacent nodes of the four nodes of the Josephson ring modulator. The lossless on-chip flux line has an input port configured to receive a pump drive signal that couples differentially to the two adjacent nodes of the of the Josephson ring modulator. The pump drive signal thereby excites a common mode of the on-chip Josephson parametric converter.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: February 19, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Baleegh Abdo
  • Patent number: 10205210
    Abstract: A cavity filter having a ceramic resonator is disclosed. The disclosed cavity filter may include: a housing in which at least one cavity is formed and which has a ceramic resonator held in the cavity; a ceramic ring joined to an upper part of the ceramic resonator; and a cover joined to one side of the housing, where a through-hole is formed in the ceramic resonator to form a penetration from one side to the other side along one direction, and a metal layer is formed on a surface on the one side of the ceramic resonator, on a surface on the other side of the ceramic resonator, and on the inner perimeter of the through-hole. The disclosed cavity filter can provide the advantage that it can be manufactured as a compact structure.
    Type: Grant
    Filed: January 16, 2017
    Date of Patent: February 12, 2019
    Assignee: ACE TECHNOLOGIES CORPORATION
    Inventors: Jae Kwang Yoon, Dong-Wan Chun
  • Patent number: 10199703
    Abstract: The present disclosure provides for a phase shifter having at least one phase shift section. The phase shift section includes an input port for receiving an incoming radio frequency signal, an output port for transmitting an outgoing radio frequency signal, an input junction coupled to the input port, an output junction coupled to the output port, and a plurality of transmission lines. The input junction includes a first plurality of cantilever type switches, and the output junction includes a second plurality of cantilever type switches. Each transmission line connects one of the first plurality of cantilever type switches to a corresponding one of the second plurality of cantilever type switches. The first plurality of cantilever type switches, the second plurality of cantilever type switches, and the plurality of transmission lines are formed in a coplanar waveguide.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: February 5, 2019
    Assignee: Synergy Microwave Corporation
    Inventors: Shiban K. Koul, Ajay Kumar Poddar, Sukomal Dey, Ulrich L. Rohde
  • Patent number: 10199707
    Abstract: A ball-grid-array printed-circuit-board assembly includes a die, a plurality of solder-balls, a substrate, a top-metal layer, and a bottom-metal layer. The die includes a signal-out-pad and a plurality of ground-pads arranged about the signal-out-pad. The top-metal layer, a plurality of vias in the substrate, and the bottom-metal layer cooperate to form a substrate-integrated-waveguide. The top-metal layer is configured to define a U-shaped-slot between a signal-portion of the top-metal layer aligned with the signal-out-pad and the substrate-integrated-waveguide, and a ground-portion of the top-metal layer aligned with the plurality of ground-pads. The U-shaped-slot is characterized by a slot-length that is selected based on the frequency of a signal, and a slot-width that is selected based on the via-height such that the signal generates an electric field directed across the U-shaped-slot whereby the signal is propagated from the signal-portion of the top-metal layer into the substrate-integrated-waveguide.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: February 5, 2019
    Assignee: APTIV TECHNOLOGIES LIMITED
    Inventors: George J. Purden, Shawn Shi, David W. Zimmerman
  • Patent number: 10199706
    Abstract: Embodiments herein describe a high-speed communication channel in a PCB that includes a dielectric waveguide sandwiched between two ground layers. The dielectric waveguide includes a core and a cladding where the material of the core has a higher dielectric constant than the material of the cladding. Thus, electromagnetic signals propagating in the core are internally reflected at the interface between the core and cladding such that the electromagnetic signals are primary contained in the core.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: February 5, 2019
    Assignee: International Business Machines Corporation
    Inventors: Samuel R. Connor, Daniel M. Dreps, Jose A. Hejase, Joseph Kuczynski, Joshua C. Myers, Junyan Tang
  • Patent number: 10199702
    Abstract: A phase shifter includes a cavity (100) and a first fixed transmission line (301), a second fixed transmission line (302), and a slidable transmission line (201) that are located in the cavity (100). The first fixed transmission line (301) is provided with a first open slot (3011), the second fixed transmission line (302) is provided with a second open slot (3021), and opening directions of the first open slot (3011) and the second open slot (3021) are opposite to each other. Two ends of the slidable transmission line (201) are respectively clamped in the first open slot (3011) and the second open slot (3021), so that the slidable transmission line (201) is electrically connected to the first fixed transmission line (301) and the second fixed transmission line (302). The slidable transmission line (201) slides relative to the first fixed transmission line (301) and the second fixed transmission line (302).
    Type: Grant
    Filed: March 9, 2017
    Date of Patent: February 5, 2019
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Zhiqiang Liao, Lei Chen, Huifan Lin, Xinneng Luo
  • Patent number: 10192676
    Abstract: A noise filter includes a plurality of inductor elements connected with one another in series. The inductor element includes a ring-shaped magnetic core, a winding wound around the magnetic core, and a ground terminal disposed between the magnetic core and the winding, the ground terminal being connected to a ground. The ground terminal includes a conductive part that surrounds at least a part of an outer periphery of the magnetic core.
    Type: Grant
    Filed: June 3, 2016
    Date of Patent: January 29, 2019
    Assignee: NEC TOKIN CORPORATION
    Inventor: Yusuke Ohdaira
  • Patent number: 10193206
    Abstract: The present invention relates to a microwave signal transition component (1) having a first signal conductor side (2) and a second signal conductor side (3). The signal transition component (1) is arranged for transfer of microwave signals from the first signal conductor side (2) to the second signal conductor side (3). The transfer component (1) comprises at least one, at least partly circumferentially running, electrically conducting frame (4), a dielectric filling (5) positioned at least partly within said conducting frame (4), at least one filling aperture (6; 6a, 6b) miming through the dielectric filling, and, for each filling aperture (6; 6a, 6b), an electrically conducting connection (7; 7a, 7b) that at least partly is positioned within said filling aperture (6; 6a, 6b). The present invention also relates to a method for manufacturing a microwave signal transition component according to the above.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: January 29, 2019
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Per Ligander, Tomas Bergsten, Ingolf Larsson, Olle Nyström, Torbjörn Westin
  • Patent number: 10193203
    Abstract: Structures and methods for interconnects and associated alignment and assembly mechanisms for and between chips, components, and 3D systems.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: January 29, 2019
    Assignee: NUVOTRONICS, INC
    Inventors: Jean-Marc Rollin, J. Robert Reid, David Sherrer, Will Stacy, Ken Vanhille, J. Marcus Oliver, Tim Smith
  • Patent number: 10187032
    Abstract: Systems and methods for adjusting impedances or power or a combination thereof across multiple plasma processing stations are described. One of the systems includes a first radio frequency (RF) generator that generates a first RF signal having a first frequency, a second RF generator that generates a second RF signal having a second frequency, and a first matching network coupled to the first RF generator to receive the first RF signal. The first impedance matching network outputs a first modified RF signal upon receiving the first RF signal. The system further includes a second matching network coupled to the second RF generator to receive the second RF signal. The second matching network outputs a second modified RF signal upon receiving the second RF signal. The system further includes a combiner and distributor coupled to an output of the first matching network and an output of the second matching network.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: January 22, 2019
    Assignee: Lam Research Corporation
    Inventors: Sunil Kapoor, George Thomas, Yaswanth Rangineni, Edward Augustyniak