Patents Examined by Betty J Forman
  • Patent number: 11408028
    Abstract: Provided herein is a method and device for performing a homogeneous nucleic acid detection assay. The device can contain a pair of plates where one of the plates comprises (i) surface amplification surface; and (ii) target-specific nucleic acid probes that are immobilized on said amplification surface and that specifically binds to a part of the target nucleic acid; and the second plate comprises a sample contact area comprising a reagent storage site that comprises target-specific nucleic acid detection agents that specifically binds to another part of the target nucleic acid. In some embodiments, the device can be read without a washing unbound label from the surface of the device.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: August 9, 2022
    Assignee: Essenlix Corporation
    Inventors: Stephen Y. Chou, Wei Ding, Ji Qi, Yufan Zhang, Ji Li
  • Patent number: 11371075
    Abstract: A fully integrated and disposable point-of-care device for detecting a target nucleic acid is provided. The device comprises: an extraction chamber adapted to receive a biological sample, wherein said extraction chamber comprises means to extract and lyse the sample to release nucleic acid; a first amplification chamber in communication with the extraction chamber, wherein said amplification chamber comprises means to trigger nucleic acid amplification of a target nucleic acid sequence to occur; and a detection chamber in communication with the amplification chamber, wherein said detection chamber comprises means to detectably label the target nucleic acid and means to detect a signal associated with labeled target nucleic acid, or a single chamber for amplification, detection and identification of multiple nucleic acid sequences.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: June 28, 2022
    Assignee: ADVANCED THERANOSTICS INC.
    Inventors: James Mahony, Christopher Stone, Hao Chen, Mark Costa, Bernard Lim
  • Patent number: 11332786
    Abstract: A sensor includes two electrodes and a modulatable electrically conductive channel attached to the two electrodes. The modulatable electrically conductive channel includes a modified, partially double stranded nucleic acid polymer electrically connected to the two electrodes and bridging the space between the two electrodes. The modified, partially double stranded nucleic acid polymer includes two polynucleotide chains partially bonded together, a gap in a first of the polynucleotide chains wherein nucleotide bases are missing, and a plurality of nucleotide bases of a second of the polynucleotide chains exposed at the gap in the first of the polynucleotide chains.
    Type: Grant
    Filed: June 13, 2019
    Date of Patent: May 17, 2022
    Assignee: Illumina, Inc.
    Inventor: John Moon
  • Patent number: 11318479
    Abstract: Individual biological cells can be selected in a micro-fluidic device and moved into isolation pens in the device. The cells can then be lysed in the pens, releasing nucleic acid material, which can be captured by one or more capture objects in the pens. The capture objects with the captured nucleic acid material can then be removed from the pens. The capture objects can include unique identifiers, allowing each capture object to be correlated to the individual cell from which the nucleic acid material captured by the object originated.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: May 3, 2022
    Assignee: Berkeley Lights, Inc.
    Inventors: Kevin T. Chapman, Eric D. Hobbs, Steven W. Short, Mark P. White, Daniele Malleo
  • Patent number: 11293896
    Abstract: Embodiments of the invention are directed to a sensor that includes a sensing circuit and a probe communicatively coupled to the sensing circuit. The probe includes a three-dimensional (3D) sensing surface coated with a recognition element and configured to, based at least in part on the 3D sensing surface interacting with a predetermined material, generate a first measurement. In some embodiments, the 3D sensing surface is shaped as a pyramid, a cone, or a cylinder to increase the sensing surface area over a two-dimensional (2D) sensing surface. In some embodiments, the 3D sensing surface facilitates penetration of the 3D sensing surface through the wall of the biological cell.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: April 5, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce B. Doris, Eugene J. O'Sullivan, Sufi Zafar
  • Patent number: 11280781
    Abstract: The present disclosure relates to an apparatus and a method for extracting genome, capable of acquiring a sufficient amount of genome for genetic analysis with high extraction efficiency, even with a small amount of target sample.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: March 22, 2022
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Soo Hyun Lee, Nakwon Choi, Byung Chul Lee, Hyungbeen Lee, Mintack Oh
  • Patent number: 11268123
    Abstract: In various embodiments a molecular circuit is disclosed. The circuit comprises a negative electrode, a positive electrode spaced apart from the negative electrode, and an enzyme molecule conductively attached to both the positive and negative electrodes to form a circuit having a conduction pathway through the enzyme. In various examples, the enzyme is a polymerase. The circuit may further comprise molecular arms used to wire the enzyme to the electrodes. In various embodiments, the circuit functions as a sensor, wherein electrical signals, such as changes to voltage, current, impedance, conductance, or resistance in the circuit, are measured as substrates interact with the enzyme.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: March 8, 2022
    Assignee: Roswell Biotechnologies, Inc.
    Inventors: Barry L. Merriman, Venkatesh Alagarswamy Govindaraj, Paul Mola, Tim Geiser
  • Patent number: 11254981
    Abstract: Compositions, systems, and methods for detecting events are provided. A composition can include a nanopore including a first side, a second side, and an aperture extending through the first and second sides; and a permanent tether including head and tail regions and an elongated body disposed there between. The head region can be anchored to or adjacent to the first or second side of the nanopore. The elongated body including a reporter region can be movable within the aperture responsive to a first event occurring adjacent to the first side of the nanopore. For example, the reporter region is translationally movable toward the first side responsive to the first event, then toward the second side, then toward the first side responsive to a second event. The first event can include adding a first nucleotide to a polynucleotide. The second event can include adding a second nucleotide to the polynucleotide.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: February 22, 2022
    Assignee: Illumina, Inc.
    Inventors: Jeffrey G. Mandell, Kevin L. Gunderson, Jens H. Gundlach
  • Patent number: 11248255
    Abstract: An automated multiplex detector system includes: (a) a nucleic acid amplification compartment for amplifying nucleic acid of one or more targets in a sample, and (b) an analysis compartment in fluid communication with the amplification compartment, the analysis compartment housing a nanoparticle-based multiplex detector capable of using the amplified nucleic acid of the amplification compartment and producing a signal that correlates with the presence of the one or more targets in the sample.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: February 15, 2022
    Assignee: The Governing Council of the University of Toronto
    Inventors: Warren C. W. Chan, Jisung Kim, Kyrylo Zagorovsky
  • Patent number: 11242552
    Abstract: A nucleic acid integrated detection method and detection reagent tube are provided, separating a lysis solution, a cleaning solution and a reaction solution in a detection reagent tube by providing a plurality of separation plugs in an over-under arrangement and disposing a hydrophobic layer in liquid or solid phase on each separation plug; adding a sample into the lysis solution; extracting nucleic acid in the sample using magnetic nanobeads; and then driving the magnetic nanobeads carrying the nucleic acid to sequentially pass through each hydrophobic layer along a magnetic bead channel and into the cleaning solution and the reaction solution to realize a cleaning and amplification for the nucleic acid, and finally, detecting the nucleic acid of the sample by an external device using an optical detection method, thus realizing a plurality of steps of nucleic acid extraction, cleaning and amplification reactions in the same detection reagent tube.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: February 8, 2022
    Assignee: USTAR Biotechnologies (Hangzhou) Ltd.
    Inventors: Qimin You, Lin Hu, Chen Qi, Junwei Yu, Zhujun Yu, Sha Wang, Rongyu Jin, Daisang Wang, Sisi Chen, Junli He, Jing Chen, Huanxin Rao, Yanqiong Zhou, Fan Yang
  • Patent number: 11204350
    Abstract: Some embodiments of the present disclosure are directed to systems and methods for separating, directing, and/or extracting a target molecule from a mix of molecules and may comprise a plurality of non-magnetic beads suspended in a ferro fluid, where the non-magnetic beads may be functionalized with at least one predetermined first molecule configured to bind with a target particle. A microfluidic device may be included which may comprise at least one microfluidic channel, the device configured to dynamically and/or statically receive an amount of the mix. Magnetic field means may be included and may be configured to apply a magnetic field to at least a portion of the at least one channel to exert an indirect force on the non-magnetic heads in the ferro fluid mix, and separate the non-magnetic beads from the ferrofluid. The beads may then be directed to at least one receptor region.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: December 21, 2021
    Assignee: ANCERA, LLC
    Inventor: Hur Koser
  • Patent number: 11142792
    Abstract: Real time electronic sequencing devices, chips, and systems are described. Arrays of nanoFET devices are used to provide sequence information about a template nucleic acid in a polymerase-template complex bound to the nanoFET. The nanoFET devices typically have a source, a drain and a gate comprising a nanowire. A single polymerase enzyme complex comprising a polymerase enzyme complexed with the template nucleic acid is bound to the gate. The polymerase is bound to the gate non-covalently through a polymeric binding agent that has two strands, each strand interacting with the nanowire such that the polymerase is in a central location between the strands with the polymeric binding agent extending away from the polymerase complex along the nanowire in both directions.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: October 12, 2021
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Stephen Turner, Jonas Korlach, Satwik Kamtekar, Jeremiah Hanes
  • Patent number: 11142793
    Abstract: Sequencing methods, devices, and systems are described. Arrays of nanoscale electronic elements comprising two electrodes separated by an insulating layer are used to provide sequence information about a template nucleic acid in a polymerase-template complex bound proximate to the insulating region. A sequencing reaction mixture comprising nucleotide analogs having impedance labels is introduced to the array of nanoscale electronic elements under conditions of polymerase mediated nucleic acid synthesis. The time sequence of incorporation of nucleotide analogs is determined by identifying the types of labels of the nucleotide analogs that are incorporated into the growing strand using measured impedance.
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: October 12, 2021
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Stephen Turner, Jeremiah Hanes, Keith Bjornson
  • Patent number: 11130985
    Abstract: In order to reduce the cost of producing a spot array substrate and reduce the cost of nucleic acid polymer analysis, a spot array substrate is used which is produced by preparing a resin substrate 402 having a surface on which an uneven pattern is formed and a plurality of bead sitting positions set in a two-dimensional array within the uneven pattern, and loading surface-modified beads onto the bead sitting positions of the resin substrate.
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: September 28, 2021
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Naoshi Itabashi, Sonoko Migitaka, Masatoshi Narahara, Tomohiro Shoji, Yukio Ono
  • Patent number: 11125748
    Abstract: According to one embodiment of the present invention, a structure includes: a substrate having a patterned surface of one or more binding sites; and a molecular shape made by a polynucleotide platform having a shape corresponding to a shape of a binding site of the one or more binding sites, the molecular shape being bound to one of the one or more binding sites.
    Type: Grant
    Filed: September 4, 2018
    Date of Patent: September 21, 2021
    Assignees: UNIVERSITY OF BRITISH COLUMBIA, CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Ashwin Gopinath, Christopher Thachuk, David G. Kirkpatrick, Paul W. Rothemund
  • Patent number: 11118173
    Abstract: A method of collecting a nucleic acid(s) from a biological sample includes step a) mixing an aluminum oxide support with a water-soluble neutral polymer adsorbed on a surface thereof and a solution containing a nucleic acid(s), thereby adsorbing the nucleic acid(s) to the support; step b) separating the support on which the nucleic acid(s) is/are adsorbed from the solution mixed in step a); and step c) collecting the nucleic acid(s) by adding an eluent to the support on which the nucleic acid(s) is/are adsorbed and which is separated in step b).
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: September 14, 2021
    Assignee: Toray Industries, Inc.
    Inventors: Shota Sekiguchi, Shinjiro Sawada
  • Patent number: 11077415
    Abstract: The invention generally relates to methods for forming mixed droplets. In certain embodiments, methods of the invention involve forming a droplet, and contacting the droplet with a fluid stream, wherein a portion of the fluid stream integrates with the droplet to form a mixed droplet.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: August 3, 2021
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Yevgeny Yurkovetsky, Darren Roy Link, Jonathan William Larson
  • Patent number: 11067574
    Abstract: A membrane strip sensor according to an embodiment of the present disclosure, the membrane strip sensor includes: a support; a sample pad; a conjugate pad; a reaction membrane; a absorption pad; and a secondary reagent pad.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: July 20, 2021
    Assignee: GMD BIOTECH, INC.
    Inventors: Min Gon Kim, Ka Hee Kim, Gyeo Re Han, Hyou Arm Joung
  • Patent number: 11067537
    Abstract: Devices and methods generate an ordered restriction map of genomic DNA extracted from whole cells. The devices have a fluidic microchannel that merges into a reaction nanochannel that merges into a detection nanochannel at an interface where the nanochannel diameter decreases in size by between 50% to 99%. Intact molecules of DNA are transported to the reaction nanochannel and then fragmented in the reaction nanochannel using restriction endonuclease enzymes. The reaction nanochannel is sized and configured so that the fragments stay in an original order until they are injected into the detection nanochannel. Signal at one or more locations along the detection nanochannel is detected to map fragments in the order they occur along a long DNA molecule.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: July 20, 2021
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: John Michael Ramsey, Laurent Menard
  • Patent number: 11046950
    Abstract: A method for producing silicate-containing magnetic particles having a closed and tight silicate layer and high purity. In addition, the novel method prevents an uncontrolled formation of aggregates and clusters of silicates on the magnetite surface, thereby having a positive influence on the properties and biological applications. The method enables depletion of nanoparticulate solid substance particles on the basis of a fractionated centrifugation. The silicate-coated magnetic particles exhibit optimized magnetization and suspension behavior as well as advantageous run-off behavior from plastic surfaces. These highly pure magnetic particles coated with silicon dioxide are preferably used for isolating nucleic acids from cell and tissue samples, whereby the separating out from a sample matrix ensues by means of magnetic fields.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: June 29, 2021
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Guido Hennig, Karlheinz Hildenbrand