Patents Examined by Bryan D. Ripa
  • Patent number: 10374216
    Abstract: Methods and apparatus to form biocompatible energization elements are described. In some examples, the methods and apparatus to form the biocompatible energization elements involve forming pellets comprising active cathode chemistry. The active elements of the cathode and anode are sealed with a biocompatible material. In some examples, a field of use for the methods and apparatus may include any biocompatible device or product that requires energization elements.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: August 6, 2019
    Assignee: Johnson & Johnson Vision Care, Inc.
    Inventors: Frederick A. Flitsch, Daniel B. Otts, Randall B. Pugh, James Daniel Riall, Adam Toner
  • Patent number: 10367237
    Abstract: According to an example, a charge level of a battery detected with a processing resource communicatively coupled to the battery. In response to detecting a battery at full charge, the current full charge capacity of the battery is recorded, and an error cycle count, a design cycle count, and a full charge capacity at a last calibration are fetched. A maximum allowable battery decay level is calculated based on the error cycle count, the design cycle count, and the full charge capacity at last calibration. In an example, in the event that the current full charge capacity is less than the full charge capacity at the last calibration minus the maximum allowable battery decay level, a battery calibration alert is triggered.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: July 30, 2019
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: John Landry, Chih-Ping (Tom) Chung
  • Patent number: 10351966
    Abstract: Processes for cleaning anodic film pore structures are described. The processes employ methods for gas generation within the pores to flush out contamination within the anodic film. The pore cleaning processes can eliminate cosmetic defects related to anodic pore contamination during the manufacturing process. For example, an anodic film that is adjacent to a polymer piece can experience contamination originating from a gap between the anodic film and polymer piece, which can inhibit colorant uptake of the anodic film in areas proximate the polymer piece. In some cases, an alternating current anodizing process or a separate operation of cathodic polarization is implemented to generate hydrogen gas that bubbles out of the pores, forcing the contaminates out of the anodic film.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: July 16, 2019
    Assignee: Apple Inc.
    Inventors: James A. Curran, William D. Burke
  • Patent number: 10345254
    Abstract: Detection methods for an electroplating process are provided. A detection method includes immersing a substrate into an electrolyte solution to perform an electroplating process. The electrolyte solution includes an additive agent. The detection method also includes immersing a detection device into the electrolyte solution. The detection method further includes applying a first alternating current (AC) voltage or direct current (DC) voltage to the detection device to detect the concentration of the additive agent. In addition, the detection method includes applying a combination of a second AC voltage and a second DC voltage to the detection device to inspect the electrolyte solution. An impurity is detected in the electrolyte solution. The detection method also includes replacing the electrolyte solution containing the impurity with another electrolyte solution.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: July 9, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yung-Chang Huang, Jui-Mu Cho, Chien-Hsun Pan, Chun-Chih Lin
  • Patent number: 10337116
    Abstract: In a film forming method, in a state where a metal solution is sealed in a first accommodation chamber of a housing with a solid electrolyte membrane and a fluid is sealed in a second accommodation chamber of a placing table with a thin film, a substrate is placed on the placing table and the placing table and the housing are moved relative to each other to cause the substrate to be interposed between the solid electrolyte membrane and the thin film, the solid electrolyte membrane and the thin film are pressed against the substrate interposed therebetween to cause the solid electrolyte membrane and the thin film to conform to a surface and a rear surface of the substrate, thereby forming a metal film.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: July 2, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Yuki Sato, Motoki Hiraoka, Hirofumi Iisaka
  • Patent number: 10323333
    Abstract: Nanofluidic passages such as nanochannels and nanopores are closed or opened in a controlled manner through the use of a feedback system. An oxide layer is grown or removed within a passage in the presence of an electrolyte until the passage reaches selected dimensions or is closed. The change in dimensions of the nanofluidic passage is measured during fabrication. The ionic current level through the passage can be used to determine passage dimensions. Fluid flow through an array of fluidic elements can be controlled by selective oxidation of fluidic passages between elements.
    Type: Grant
    Filed: August 20, 2016
    Date of Patent: June 18, 2019
    Assignee: International Business Machines Corporation
    Inventors: Stefan Harrer, Stephen M. Rossnagel, Philip S. Waggoner
  • Patent number: 10323332
    Abstract: An electrical chemical plating process is provided. A semiconductor structure is provided in an electrical plating platform. A pre-electrical-plating step is performed wherein the pre-electrical-plating step is carried out under a fixed voltage environment and lasts for 0.2 to 0.5 seconds after the current is above the threshold current of the electrical plating platform. After the pre-electrical-plating step, a first electrical plating step is performed on the semiconductor structure.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: June 18, 2019
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chun-Ling Lin, Yen-Liang Lu, Chi-Mao Hsu, Chin-Fu Lin, Chun-Hung Chen, Tsun-Min Cheng, Chi-Ray Tsai
  • Patent number: 10316423
    Abstract: Nanofluidic passages such as nanochannels and nanopores are closed or opened in a controlled manner through the use of a feedback system. An oxide layer is grown or removed within a passage in the presence of an electrolyte until the passage reaches selected dimensions or is closed. The change in dimensions of the nanofluidic passage is measured during fabrication. The ionic current level through the passage can be used to determine passage dimensions. Fluid flow through an array of fluidic elements can be controlled by selective oxidation of fluidic passages between elements.
    Type: Grant
    Filed: August 20, 2016
    Date of Patent: June 11, 2019
    Assignee: International Business Machines Corporation
    Inventors: Stefan Harrer, Stephen M. Rossnagel, Philip S. Waggoner
  • Patent number: 10309031
    Abstract: A system for controlling the operation of apparatus for electroplating semiconductor substrates includes operating in a high mode of operation in which an off-the-shelf power supply provides current or voltage that is directly used to produce the channel control signal and in a low mode of operation in which the off-the-shelf power supply biases a circuit that provides a current or voltage to produce the channel control signal.
    Type: Grant
    Filed: June 22, 2018
    Date of Patent: June 4, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Charles A. Cummings, Mikael R. Borjesson
  • Patent number: 10301740
    Abstract: A two piece electroplating frame or electroplating frame is disclosed that is suitable for holding multiple solar cells during an electroplating operation. The electroplating frame can be formed from or at least covered with non-conductive material to reduce the collection of plating material on the electroplating frame. The two pieces of the electroplating frame can be coupled together around the solar cells by magnets distributed throughout the electroplating frame. The electroplating frame can include alignment features for self-aligning the assembly of the two pieces without requiring precise pre-alignment.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: May 28, 2019
    Assignee: SolarCity Corporation
    Inventors: Pablo Gonzalez, Ming-Du Kang
  • Patent number: 10301735
    Abstract: A method of forming a metal coating includes: disposing a solid electrolyte membrane (13) between an anode (11) and a substrate (B) which forms a cathode; bringing a solution (L) containing metal ions into contact with an anode-side portion of the solid electrolyte membrane (13); and causing, in a state where the solid electrolyte membrane (13) is in contact with the substrate (B), a current to flow from the anode (11) to the cathode so as to form a metal coating formed of the metal on the surface of the substrate (B). The metal coating is formed by repeating a current-flowing period (T) in which a current flows from the anode (11) to the cathode and a non-current-flowing period (N) in which a current does not flow between the anode (11) and the cathode.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: May 28, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroshi Yanagimoto, Motoki Hiraoka, Yuki Sato, Yoshitaka Shinmei
  • Patent number: 10301729
    Abstract: The invention provides a system for collecting metal in an electrorefining process, the system having a hollow cathode; and a container defining an upwardly extending surface adapted to be received by the hollow cathode. An embodiment of the invention provides for metal reduction to occur on laterally facing and medially facing surfaces of the cathode such that electrolyte resides between surfaces of the cathode. Also provided is a metal electrorefining process having the steps of subjecting molten salt containing metal moieties to electrolysis wherein reduced metal accumulates in a cathode-cup construct in a first position; raising the construct to a second position above the molten salt while subjecting the construct to heat from the molten salt; withdrawing the cathode from the construct into a vestibule to the electrorefiner to a third position; and removing the cathode and cup from the electrorefiner to a fourth position.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: May 28, 2019
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: James L. Willit, Mark A. Williamson, Stanley G. Wiedmeyer, Magdalena M. Tylka
  • Patent number: 10294580
    Abstract: A plating method capable of controlling a concentration of an additive within a proper range during plating of a substrate is disclosed. The plating method includes: disposing an anode and a substrate, having a via-hole formed in a surface thereof, so as to face each other in a plating solution containing an additive; applying a voltage between the anode and the substrate for filling the via-hole with metal; measuring the voltage applied to the substrate; calculating an amount of change in the voltage per predetermined time; and adjusting a concentration of the additive in the plating solution to keep the amount of change in the voltage within a predetermined control range.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: May 21, 2019
    Assignee: EBARA CORPORATION
    Inventors: Yusuke Tamari, Akira Owatari, Mizuki Nagai, Shingo Yasuda
  • Patent number: 10294581
    Abstract: A method of plating a substrate, such as a wafer, by applying a voltage between the substrate and an anode is disclosed. The plating method includes: preparing a substrate having a recess formed in a surface thereof, a conductive layer being formed in at least a part of the recess; placing an insoluble anode and the substrate in contact with a copper sulfate plating solution containing an additive; applying a predetermined plating voltage between the substrate and the insoluble anode by a plating power source to plate the substrate; and shutting off a reverse electric current, which flows from the insoluble anode to the substrate via the plating power source, by a diode disposed between the insoluble anode and the substrate when the predetermined plating voltage is not applied.
    Type: Grant
    Filed: October 1, 2015
    Date of Patent: May 21, 2019
    Assignee: EBARA CORPORATION
    Inventors: Shingo Yasuda, Akira Owatari
  • Patent number: 10294575
    Abstract: An electrolytic treatment device that performs a prescribed treatment using ions to be treated that are contained in a treatment liquid, and includes a direct electrode and a counter electrode which are arranged on either side of the treatment liquid, an indirect electrode which forms an electric field in the treatment liquid, and a switch which switches between connection of the indirect electrode to the power source and connection of the indirect electrode to the direct electrode or the counter electrode. The switch connects and applies a voltage across the indirect electrode and the power source, and breaks the connection between the indirect electrode and the power source and connects the indirect electrode to the direct electrode or the counter electrode.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: May 21, 2019
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Haruo Iwatsu
  • Patent number: 10294579
    Abstract: A portable electroplating system with components integrated into a complete system, rather than separated and disjointed. A single electroplating system can be self-contained to include all necessary rectifiers, tanks, cleaning functionalities, and other helpful or necessary items. By using smaller components than conventional electroplating systems, the system can allow for more economical use of chemicals, solutions, and energy and can be utilized more efficiently towards a unique shape or size of object to be plated. The system can also include wheels to make the system portable. A rack management system can be employed to move objects from one location to another within the system.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: May 21, 2019
    Assignee: Snap-on Incorporated
    Inventors: Kraig A. Tabor, Thomas L. Kassouf, Ricardo M. Guedes, Greg P. Formella, Alan J. Birschbach, Peter W. Eisch, Garry L. Dillon, Chad J. Kaschak, Michael G. Gentile
  • Patent number: 10280527
    Abstract: A method of fabricating metallic fuel from surplus plutonium may include combining plutonium oxide powder and uranium oxide powder to obtain a mixed powder with reduced proliferation potential. The mixed powder may be electroreduced in a bath of molten salt so as to convert the mixed powder to a first alloy. The first alloy may be pressed to remove a majority of the molten salt adhered to the first alloy to form a pressed alloy-salt mixture. The first alloy may be isolated from the salt by melting the pressed alloy-salt mixture. The first alloy may be further processed to fabricate a fuel rod. Accordingly, the metallic fuel produced may be used in a fast reactor system, such as a Power Reactor Innovative Small Module (PRISM).
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: May 7, 2019
    Assignee: GE-Hitachi Nuclear Energy Americas LLC
    Inventors: Eric P. Loewen, Zachary W. Kosslow, John F. Berger
  • Patent number: 10260855
    Abstract: An electroplating reactor includes an electro-plating solution in a bath, a ring cathode in the bath and located to contact a workpiece such that only the front side of the workpiece is immersed in the solution, plural anodes immersed in the bath below the ring cathode, and plural anode voltage sources coupled to the plural anodes; plural thickness sensors at spatially separate locations on the back side of the workpiece with feedback control to the anode voltage sources.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: April 16, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Todd J. Egan, Edward W. Budiarto, Robert O. Miller, Abraham Ravid, Bridger E. Hoerner, Robert W. Batz, Jr., Daniel J. Woodruff
  • Patent number: 10260007
    Abstract: Improved separation of oil and water as well as suspended solids from the emulsion layer formed in a petroleum desalter is achieved by injection of demulsifier into the desalter vessel to achieve a higher localized concentration of demulsifier in the emulsion layer so as to promote improved oil/water separation from the emulsion layer. The demulsifier may be injected into the water layer or the oil layer in the region of the emulsion layer or directly into the stabilized emulsion layer.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: April 16, 2019
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Magaly C. Barroeta, Gregory Mason Goodman, Ashok Uppal, Mohsen Shahmirzadi Yeganeh, Jose X. Simonetty
  • Patent number: 10263259
    Abstract: The present invention is to provide a method for producing core-shell catalyst particles with high catalytic activity per unit mass of platinum. Disclosed is a method for producing core-shell catalyst particles including a core containing palladium and a shell containing platinum and covering the shell, wherein the method includes: a step of depositing copper on the surface of the palladium-containing particles by applying a potential that is nobler than the oxidation-reduction potential of copper to the palladium-containing particles in a copper ion-containing electrolyte, and a step of forming the shell by, after the copper deposition step and inside the reaction system kept at ?3° C. or more and 10° C.
    Type: Grant
    Filed: December 22, 2014
    Date of Patent: April 16, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Keiichi Kaneko, Hiroko Kimura, Makoto Adachi