Patents Examined by Caitlyn Mingyun Sun
  • Patent number: 11185862
    Abstract: The present disclosure relates to digital microfluidic systems having an electrode bus controlled by a single actuation input, and methods for droplet manipulation using the electrode bus. Particularly, aspects are directed to a digital microfluidic system including a first group of droplet actuation electrodes formed in a substrate, a first wiring bus formed in the substrate and connected to each electrode in the first group of droplet actuation electrodes, and a first single point of actuation connected to the first wiring bus; and a second group of droplet actuation electrodes formed in the substrate, a second wiring bus formed in the substrate and connected to each electrode in the second group of droplet actuation electrodes, and a second single point of actuation connected to the second wiring bus.
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: November 30, 2021
    Assignee: National Technology & Engineering Solutions of Sandia, LLC
    Inventors: Philip Gach, Anup Singh
  • Patent number: 11175259
    Abstract: A sensing device including a transistor, at least one response electrode, and a selective membrane is provided. The transistor includes a gate end, a source end, a drain end, and a semiconductor layer, wherein the source end and the drain end are located on the semiconductor layer, and the gate end is located between the source end and the drain end. The at least one response electrode is disposed opposite to the gate end of the transistor and spaced apart from the transistor. The selective membrane is located on the at least one response electrode or on the transistor.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: November 16, 2021
    Assignee: National Tsing Hua University
    Inventors: Yu-Lin Wang, Yi-Ting Chen, Revathi Sukesan
  • Patent number: 11175260
    Abstract: A nanopore device for molecular characterization that includes a supporting substrate. The supporting substrate has at least one nanopore where the nanopore is a carbon nanotube of a first diameter. The nanodevice is configured to provide a stimulus to the carbon nanotube causing the first diameter to change to a second diameter. The nanopore device also includes a device configured to apply the stimulus to the nanopore. The nanopore device further includes an electrical circuit configured to measure an electrical property across the nanopore, where there is a change in the electrical property when a molecule traverses the nanopore.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: November 16, 2021
    Assignee: International Business Machines Corporation
    Inventors: Priscilla Racquel Rogers, James R. Kozloski
  • Patent number: 11167247
    Abstract: Disclosed are methods for separating carbon nanotubes on the basis of a specified parameter, such as length. The methods include labelling of the carbon nanotubes with a biological moiety, followed by SDS-PAGE and staining, to separate the carbon nanotubes on the basis of length and/or characterize their length. In some embodiments, egg-white lysozyme, conjugated covalently onto single-walled carbon nanotubes surfaces using carbodiimide method, followed by SDS-PAGE and visualization of the single-walled nanotubes using silver staining, provides high resolution characterization of length of the single-walled carbon nanotubes. This high precision, inexpensive, rapid and simple separation method obviates the need for centrifugation, additional chemical analyses, and expensive spectroscopic techniques such as Raman spectroscopy to visualize carbon nanotube bands. The disclosed methods find utility in quality-control in the manufacture of carbon nanotubes of specific lengths.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: November 9, 2021
    Assignee: NANOLC-12, LLC
    Inventors: Zahra Borzooeian, Mohammad E. Taslim
  • Patent number: 11161115
    Abstract: Aspects of the present disclosure are directed to a pH control device. The device comprises a substrate, on which is defined a flow path adapted to receive a liquid. The device further comprises a set of electrodes, which includes a pH sensing electrode and pH generation electrodes. The electrodes are arranged along the flow path. The pH sensing electrode is arranged so as to be subjected to a change in pH of a portion of the liquid on the flow path, as caused by the pH generation electrodes. In addition, the device includes a controller, which is configured to apply a voltage across the pH generation electrodes, based on a signal obtained via the pH sensing electrode and a reference electrode. This enables local control a pH of the liquid portion. The device may further be embodied as a sensor, additionally comprising a detection electrode.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: November 2, 2021
    Assignee: International Business Machines Corporation
    Inventors: Neil Ebejer, Patrick Ruch
  • Patent number: 11161114
    Abstract: Aspects of the present disclosure are directed to a pH control device. The device comprises a substrate, on which is defined a flow path adapted to receive a liquid. The device further comprises a set of electrodes, which includes a pH sensing electrode and pH generation electrodes. The electrodes are arranged along the flow path. The pH sensing electrode is arranged so as to be subjected to a change in pH of a portion of the liquid on the flow path, as caused by the pH generation electrodes. In addition, the device includes a controller, which is configured to apply a voltage across the pH generation electrodes, based on a signal obtained via the pH sensing electrode and a reference electrode. This enables local control a pH of the liquid portion. The device may further be embodied as a sensor, additionally comprising a detection electrode.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: November 2, 2021
    Assignee: International Business Machines Corporation
    Inventors: Neil Ebejer, Patrick Ruch
  • Patent number: 11150214
    Abstract: The capillary electrophoresis apparatus according to the present invention can maintain the temperature in the longitudinal direction of each of a plurality of capillaries uniformly, such that the separation performance of the capillary electrophoresis apparatus can be stabilized, and the analysis performance can be improved.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: October 19, 2021
    Assignee: Hitachi High-Tech Corporation
    Inventors: Wataru Sato, Motohiro Yamazaki
  • Patent number: 11125719
    Abstract: A gas sensor is capable of measuring the concentrations of each of a plurality of target components in a gas being measured. The gas sensor has a sensor element, and one or more processors configured to control an oxygen concentration and to acquire a target component concentration. The oxygen concentration is controlled in a first chamber and a second chamber of a first sensor cell, and the oxygen concentration is also controlled in a second chamber of a second sensor cell. The concentration of a second target component is acquired on the basis of a difference ?Ip between a first pump current value and a second pump current value, and the concentration of a first target component is acquired by subtracting the concentration of the second target component from the second pump current value (total concentration).
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: September 21, 2021
    Assignee: NGK INSULATORS, LTD.
    Inventor: Kunihiko Nakagaki
  • Patent number: 11125720
    Abstract: A capillary electrophoresis apparatus is disclosed that does not discharge and achieves both compactness and performance even with a part configuration having insufficient spatial distance or creeping distance. This capillary electrophoresis apparatus is provided with a resistance heater for heating capillaries, an electrode holder that holds capillary electrodes and is connected to a high-voltage unit, and a conductive member that at least partially comprises metal and has been grounded to a low potential. The electrode holder and conductive member are in contact with heat-dissipating rubber disposed there between that composes a structure comprising an insulation member. As a result of this configuration, discharge risk is reduced through the reduction of the potential of parts near the high-voltage unit and the slow reduction of the high potential of the high-voltage unit.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: September 21, 2021
    Assignee: Hitachi High-Tech Corporation
    Inventors: Taro Nakazawa, Motohiro Yamazaki, Kenko Uchida, Akira Fujii
  • Patent number: 11090660
    Abstract: The present technology relates to improved device and methods of use of insulator-based dielectrophoresis. This device provides a multi-length scale element that provides enhanced resolution and separation. The device provides improved particle streamlines, trapping efficiency, and induces laterally similar environments. Also provided are methods of using the device.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: August 17, 2021
    Assignees: ARIZONA BOARD OF REGENTS ON BEHALF OF ARIZONA STATE UNIVERSITY, NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT
    Inventors: Mark Hayes, Claire Crowther, Paul Jones
  • Patent number: 11079355
    Abstract: A method for cancer diagnosis is disclosed. The method includes forming a plurality of cultured cells on an electrochemical biosensor placing the electrochemical biosensor in a medium solution comprising a cell culture solution of a plurality of biological cells, measuring a first electrochemical response from the electrochemical biosensor with the plurality of cultured cells, forming a plurality of stimulated cells on the electrochemical biosensor by ultrasonically stimulating of the plurality of cultured cells, measuring a second electrochemical response from the electrochemical biosensor with the plurality of stimulated cells, and detecting presence of cancer cells responsive to a difference between the first electrochemical response and the second electrochemical response being less than a threshold.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: August 3, 2021
    Assignee: NANO HESGARSAZAN SALAMAT ARYA
    Inventors: Mohammad Abdolahad, Mohammad Ali Khayamian, Saeid Ansaryan, Majid Baniassadi
  • Patent number: 11067530
    Abstract: A method of operation of a gas sensor includes applying a control voltage that is set between the reference electrode and the measurement-object gas side electrode; and detecting the specific gas concentration in the measurement-object gas on the basis of a voltage between the reference electrode and the measurement electrode during a second period, from among a first period that is started upon setting of the control voltage to on state, during which a potential difference between the reference electrode and the measurement-object gas side electrode is large, and the second period that is started upon setting of the control voltage to off state after the potential difference falls from the first period. Tf, a fall time of the potential difference between the first period and the second period, and T2, a second time that is a length of the second period, satisfies Tf?T2.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: July 20, 2021
    Assignee: NGK INSULATORS, LTD.
    Inventors: Yusuke Watanabe, Takayuki Sekiya
  • Patent number: 11067528
    Abstract: The invention relates to an electro-chemical sensor and coating method, production method and corresponding uses. The coating method of an electro-chemical sensor comprises the following steps: coating a carbon-rich substrate, with a carbon content greater than or equal to 0 wt. % in relation to the total weight of the substrate, and with an organic polymer; and applying a cold plasma treatment to said coating. This method permits the production of electro-chemical sensors with a carbon-rich substrate, with a carbon content greater or equal to 50 wt. % in relation to the total weight of the substrate, and a modified organic polymer coating. These new sensors are suitable for the detection of, inter alia, dopamine, glucose, uric acid and ascorbic acid.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: July 20, 2021
    Assignee: UNIVERSITAT POLITÈCNICA DE CATALUNYA
    Inventors: Elaine Armelin Diggroc, Georgina Fabregat Jové, Jordi Llorca Pique, Carlos Alemán Llansó
  • Patent number: 11067531
    Abstract: A method of operation of a gas sensor includes applying a control voltage that is repetitively set to on state and off state between the reference electrode and the measurement-object gas side electrode to pump in oxygen to the periphery of the reference electrode; and detecting the specific gas concentration in the measurement-object gas on the basis of a voltage between the reference electrode and the measurement electrode during a second period, from among a first period that is started upon setting of the control voltage to on state, during which a potential difference between the reference electrode and the measurement-object gas side electrode is large, and the second period that is started upon setting of the control voltage to off state after the potential difference falls from the first period.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: July 20, 2021
    Assignee: NGK INSULATORS, LTD.
    Inventors: Yusuke Watanabe, Takayuki Sekiya
  • Patent number: 11047037
    Abstract: Embodiments of the present disclosure are directed to thin conductive composites, such as biosensor electrodes, containing a polymeric film substrate a conductive layer disposed adjacent the substrate. The conductive layer includes Krypton and a conductive material. The conductive layer has an average thickness of no greater than about 150 nanometers. The conductive layer has a normalized thickness (t/?) of no greater than about 3.0. Further, the composite has a sheet resistance of no greater than about 97.077t?1.071 ohm/sq, where t represents the thickness of the conductive layer in nanometers.
    Type: Grant
    Filed: May 27, 2016
    Date of Patent: June 29, 2021
    Assignee: SAINT-GOBAIN PERFORMANCE PLASTICS CORPORATION
    Inventors: Wentao Xu, Fabien Lienhart
  • Patent number: 11041150
    Abstract: The present disclosure relates to fluidic systems and devices for processing, extracting, or purifying one or more analytes. These systems and devices can be used for processing samples and extracting nucleic acids, for example by isotachophoresis. In particular, the systems and related methods can allow for extraction of nucleic acids, including non-crosslinked nucleic acids, from samples such as tissue or cells. The systems and devices can also be used for multiplex parallel sample processing.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: June 22, 2021
    Assignee: Purigen Biosystems, Inc.
    Inventors: Lewis A. Marshall, Amy L. Hiddessen, Nathan P. Hoverter, Klint A. Rose, Juan G. Santiago, Matthew S. Munson, Janine Mok, Sean Arin, Yatian Qu, Andrew Lee, Michael Christopher DeRenzi
  • Patent number: 11029280
    Abstract: An embodiment provides a method for determining the alkalinity of an aqueous sample using an alkalinity sensor, including: monitoring the pH of an aqueous sample using a pH sensor in a sample cell, the pH sensor including a pH sensor electrode made of boron-doped diamond; generating hydronium ions, using a hydronium generator, in the aqueous sample in the sample cell, the hydronium generator including a hydronium-generating electrode; changing the pH of the aqueous sample by causing the hydronium generator to generate an amount of hydronium ions in the aqueous sample; quantifying and converting a current or charge to the number of hydronium ions produced to an end point of the electrochemical titration, the end point correlating to the alkalinity of a sample; and analyzing the alkalinity of the aqueous sample based on the generated amount of hydronium ions and the resulting change in pH monitored by the pH sensor.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: June 8, 2021
    Assignee: HACH COMPANY
    Inventors: Dan Kroll, Corey Salzer
  • Patent number: 11029306
    Abstract: A liquid voltage is applied to a first side of a lipid bilayer. The liquid voltage comprises a tag-reading period with a tag-reading voltage that tends to capture a tag into a nanopore in the lipid bilayer and an open-channel period with an open-channel voltage that tends to repel the tag. A pre-charging voltage source is connected to an integrating capacitor and a working electrode on a second side of the lipid bilayer during a pre-charging time period, such that the integrating capacitor and the working electrode are charged to a pre-charging voltage. The pre-charging voltage source is disconnected from the integrating capacitor and the working electrode during an integrating time period, such that a voltage of the integrating capacitor and a voltage of the working electrode may vary as a current flows through the nanopore. The pre-charging time period overlaps with a beginning portion of the tag-reading period.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: June 8, 2021
    Assignee: Roche Sequencing Solutions, Inc.
    Inventors: Roger J. A. Chen, Hui Tian, J. William Maney, Jr.
  • Patent number: 11022576
    Abstract: A gas sensor with a gas permeable region is disclosed. In an embodiment a gas sensor includes a dielectric membrane formed on a semiconductor substrate having a cavity portion, a heater located within or over the dielectric membrane, a material for sensing a gas, wherein the material is located on one side of the dielectric membrane, a support structure located near the material, a gas permeable membrane coupled to the support structure so as to protect the material, wherein the semiconductor substrate forms the support structure.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: June 1, 2021
    Assignee: Sciosense B.V.
    Inventors: Syed Zeeshan Ali, Matthew Govett, Simon Jonathan Stacey
  • Patent number: 11021731
    Abstract: Analyte sensors and methods for fabricating analyte sensors and analyte sensing layers are presented here. In accordance with certain embodiments, a method for fabricating an analyte sensor includes providing a base layer and forming a conductive layer over the base layer. Further, the method includes forming an analyte sensing layer disposed over the conductive layer. The analyte sensing layer includes glucose oxidase entrapped within a thermally-cured polymer matrix and within a UV-cured polymer matrix.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: June 1, 2021
    Assignee: MEDTRONIC MINIMED, INC.
    Inventor: Kelly Lu