Patents Examined by Carolyn Fin
  • Patent number: 10663608
    Abstract: A method and system for calibrating a PET scanner are described. The PET scanner may have a field of view (FOV) and multiple detector rings. A detector ring may have multiple detector units. A line of response (LOR) connecting a first detector unit and a second detector unit of the PET scanner may be determined. The LOR may correlate to coincidence events resulting from annihilation of positrons emitted by a radiation source. A first time of flight (TOF) of the LOR may be calculated based on the coincidence events. The position of the radiation source may be determined. A second TOF of the LOR may be calculated based on the position of the radiation source. A time offset may be calculated based on the first TOF and the second TOF. The first detector unit and the second detector unit may be calibrated based on the time offset.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: May 26, 2020
    Assignee: SHANGHAI UNITED IMAGING HEALTHCARE CO., LTD.
    Inventors: Xinyu Lyu, Qixiang Zhang, Wenbing Song, Zijun Ji, Weiping Liu
  • Patent number: 10648913
    Abstract: A system for detecting signal components of light induced by multiple excitation sources, which includes a flow channel having two spatially separated optical interrogation zones; a light illumination subsystem that directs each of two light beams of different wavelengths to a different zone of the optical interrogation zones; a detector subsystem that converts detected light into a total electrical signal having both modulated and unmodulated electrical signals; and a processor that determines signal components from the light detected from each of the optical interrogation zones.
    Type: Grant
    Filed: January 25, 2017
    Date of Patent: May 12, 2020
    Assignee: ACEA BIOSCIENCES, INC.
    Inventors: Nan Li, Jian Wu, Ye Chen, Tianxing Wang, Xiaobo Wang
  • Patent number: 10620325
    Abstract: Disclosed herein is a different radiation measuring sensor and a manufacturing method thereof. The different radiation measuring sensor includes a semiconductor substrate, at least one bottom electrode formed on a bottom surface of the semiconductor, a plurality of top electrodes formed on a top surface of the semiconductor and electrically connected to the bottom electrode, and sensing films formed on the plurality of top electrodes and reacting with different materials.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: April 14, 2020
    Assignee: KOREA ATOMIC ENERGY RESEARCH INSTITUTE
    Inventors: Han Soo Kim, Jang Ho Ha, Manhee Jeong, Young Soo Kim
  • Patent number: 10564300
    Abstract: A radiation detector includes a substrate, control lines provided on the substrate and extending in a first direction, data lines provided on the substrate and extending in a second direction crossing the first direction, and detection parts arranged in a matrix. Each detection part includes a thin film transistor and a conversion part converting radiation or light into electricity. Further, a control circuit switches an on state and an off state of each thin film transistor and a signal detection circuit reads out image data in the on state of the thin film transistor. Further, the detector judges a start time of radiation incidence based on a value of the image data read out in the on state of each thin film transistor.
    Type: Grant
    Filed: February 26, 2018
    Date of Patent: February 18, 2020
    Assignee: CANON ELECTRON TUBES & DEVICES CO., LTD.
    Inventor: Hiroshi Onihashi
  • Patent number: 10564299
    Abstract: A SiPM tile includes SiPM arrays on a detector die, each of the SiPM arrays including a first plurality of microcells and a second plurality of reference microcells dispersed on the die, each reference microcell including an optically-opaque mask, a readout circuit each including a respective charge sensitive amplifier (CSA) connected to one of the reference microcells, each CSA configured to accumulate the dark current of the reference microcell during a selected time window, a hybrid temperature control circuit configured to receive an output signal from each CSA, and to determine the real-time temperature of the die based on the received output signal, to provide the real-time temperature to a temperature compensation and correction control unit that adjusts a cooling/heating system flow provided to the die, the adjustment based on the real-time temperature. A method for compensating the operating temperature variation of the SiPM tile is also disclosed.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: February 18, 2020
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Geng Fu, Jianjun Guo
  • Patent number: 10545248
    Abstract: A direct ion storage (DIS) radiation detector or dosimeter has a design that is easy and low cost to manufacture using semiconductor processing techniques. The detectors include internal communications interfaces so they are easy to read. Different interfaces, including wired, e.g. USB ports, and wireless interfaces, may be used, so that the dosimeters may be read over the internet. The detectors can thus be deployed or used in a variety of detection systems and screening methods, including periodic or single time screening of people, objects, or containers at a location by means of affixed dosimeters; screening of objects, containers or people at a series of locations by means of affixed dosimeters, and surveillance of an area by monitoring moving dosimeters affixed to people or vehicles.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: January 28, 2020
    Assignee: MIRION TECHNOLOGIES, INC.
    Inventors: Jukka Kahilainen, Thomas Logan
  • Patent number: 10509133
    Abstract: A radiation counting device is provided that includes a scintillator, a pixel circuit, and an analog-to-digital conversion circuit. In the radiation counting device, the scintillator generates a photon when radiation is incident. In the radiation counting device, the pixel circuit converts the photon into charge, stores the charge over a predetermined period, and generates an analog voltage in accordance with the amount of stored charge. In the radiation counting device, the analog-to-digital conversion circuit converts the analog voltage into a digital signal in a predetermined quantization unit less than the analog voltage generated from the one photon.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: December 17, 2019
    Assignee: Sony Semiconductor Solutions Corporation
    Inventor: Toshiyuki Nishihara
  • Patent number: 10481107
    Abstract: A scanning apparatus for measuring the attenuation of radiation passing from a radiation source along a radiation path to a radiation detector includes a source of radiation; at least one radiation detector capable of detecting radiation emitted by the source a data processor associated with the at least one radiation detector for calculating a property of material present in a linear radiation path between the source and the at least one detector; and a spacer arranged between the source and the at least one detector. The spacer defines a space which is capable of excluding water and having an average density which is less than 1 gcm?3. The provision of a spacer in the radiation path enables more radiation to be passed along the radiation path because water can be replaced with a material which is less attenuating to radiation.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: November 19, 2019
    Assignee: Johnson Matthey Public Limited Company
    Inventors: James Campbell, Emanuele Ronchi
  • Patent number: 10461209
    Abstract: An avalanche photodiode for detecting ultraviolet radiation, including: a silicon carbide body having a first type of conductivity, which is delimited by a front surface and forms a cathode region; an anode region having a second type of conductivity, which extends into the body starting from the front surface and contacts the cathode region; and a guard ring having the second type of conductivity, which extends into the body starting from the front surface and surrounds the anode region.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: October 29, 2019
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Massimo Cataldo Mazzillo, Antonella Sciuto, Dario Sutera
  • Patent number: 10379228
    Abstract: A photon detector includes a sensor array of optical sensors disposed in a plane and four substantially identical scintillation crystal bars. Each optical sensor is configured to sense luminescence. Each of the four scintillator crystal bars being a rectangular prism with four side surfaces and first and second end surfaces, each scintillation bar has two side surfaces which each face a side surface of another scintillation bar, and each scintillation crystal bar generating a light scintillation in response to interacting with a received gamma photon. A first layer (80) is disposed in a first plane disposed between and adjacent facing side surfaces of the four substantially identical scintillation crystal bars with a light sharing portion (82) adjacent the first end surface and a reflective portion (84) adjacent the second end surface.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: August 13, 2019
    Assignees: KONINKLIJKE PHILIPS N.V., UNIVERSITY OF WASHINGTON
    Inventors: David Sowards-Emmerd, Adrienne Lehnert, William Hunter, Robert Miyaoka, Lingxiong Shao, Thomas Leroy Laurence
  • Patent number: 10345150
    Abstract: A terahertz wave spectrometry system that is capable of identifying analyzing target molecules contained in an analyte even if the analyte contains water, by activating a water remover to remove water according a comparison of absorption spectrums so that water in the analyte is easily removed without causing the analyzing target molecules to disappear due to decomposition or denaturation.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: July 9, 2019
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Seiji Fujihara, Yasuyuki Naito, Morio Tomiyama
  • Patent number: 10302499
    Abstract: A method for adaptively adjusting a threshold used to detect the presence of a living being may include receiving a first set of sensor measurements acquired by a passive infrared (PIR) sensor during a time period when the living being is not expected to be present in a space monitored by the PIR sensor. Here, the sensor measurements may depend on one or more noise sensitivity characteristics of the PIR sensor. The method may include adjusting a threshold that may indicate a presence of the living being based on the first set of sensor measurements. The method may then receive a second set of sensor measurements acquired by the PIR sensor and detect the presence of the living being when at least one of the second set of sensor measurements exceeds the threshold.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: May 28, 2019
    Assignee: GOOGLE LLC
    Inventors: Michael Dixon, Andrew Goldenson