Patents Examined by Chad H. Smith
  • Patent number: 11860410
    Abstract: A photonic integrated circuit platform includes a substrate, a first oxide layer disposed on the substrate and including an insulating transparent oxide, and a first optical element layer disposed on the first oxide layer and including a semiconductor material. The photonic integrated circuit platform further includes a second optical element layer disposed on the first optical element layer and including an insulating material different from the insulating transparent oxide of the first oxide layer, the second optical element layer further including a compound semiconductor material different from the semiconductor material of the first optical element layer, a second oxide layer disposed on the second optical element layer and including an insulating transparent oxide, and a plurality of optical elements formed by patterning the first optical element layer or the second optical element layer.
    Type: Grant
    Filed: September 17, 2020
    Date of Patent: January 2, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dongjae Shin, Dongsik Shim, Eunkyung Lee, Changbum Lee, Bongyong Jang
  • Patent number: 11860051
    Abstract: Disclosed are an intelligent bionic human body part model detection device and a method for manufacturing same. The device comprises: a bionic human body part model (1); and multiple optical fiber grating sensing units (5) which are integrated on an optical fibre and arranged at multiple pre-determined positions of the bionic human body part model (1). The device can improve the accuracy of the detection of pressure applied to the intelligent bionic human body part model.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: January 2, 2024
    Assignee: THE HONG KONG RESEARCH INSTITUTE OF TEXTILES AND APPAREL LIMITED
    Inventors: Xiao-ming Tao, Bao Yang, Xi Wang, Su Liu, Xia Guo, Shi-rui Liu
  • Patent number: 11860415
    Abstract: Integrated optical waveguides, direct-bonded waveguide interface joints, optical routing and interconnects are provided. An example optical interconnect joins first and second optical conduits. A first direct oxide bond at room temperature joins outer claddings of the two optical conduits and a second direct bond joins the inner light-transmitting cores of the two conduits at an annealing temperature. The two low-temperature bonds allow photonics to coexist in an integrated circuit or microelectronics package without conventional high-temperatures detrimental to microelectronics. Direct-bonded square, rectangular, polygonal, and noncircular optical interfaces provide better matching with rectangular waveguides and better performance. Direct oxide-bonding processes can be applied to create running waveguides, photonic wires, and optical routing in an integrated circuit package or in chip-to-chip optical communications without need for conventional optical couplers.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: January 2, 2024
    Assignee: ADEIA SEMICONDUCTOR BONDING TECHNOLOGIES INC.
    Inventors: Shaowu Huang, Javier A. Delacruz, Liang Wang, Guilian Gao
  • Patent number: 11860435
    Abstract: A fiber optic pigtail assembly that includes a plurality of optical fibers and at least one optical connector. The optical fibers each have a first end opposite a second end. The plurality of optical fibers are ribbonized together from the first end of each of the plurality of optical fibers partway toward the second end of each of the plurality of optical fibers and form a ribbonized end portion. The at least one optical connector is connected to the second end of each of the plurality of optical fibers. A loose portion of the plurality of optical fibers is positioned between the at least one optical connector and the ribbonized end portion.
    Type: Grant
    Filed: October 4, 2021
    Date of Patent: January 2, 2024
    Assignee: Leviton Manufacturing Co., Inc.
    Inventors: Sean McCloud, Tony Yuen, Jamie Leonard
  • Patent number: 11860413
    Abstract: Described herein are photonic communication platforms that can overcome the memory bottleneck problem, thereby enabling scaling of memory capacity and bandwidth well beyond what is possible with conventional computing systems. Some embodiments provide photonic communication platforms that involve use of photonic modules. Each photonic module includes programmable photonic circuits for placing the module in optical communication with other modules based on the needs of a particular application. The architecture developed by the inventors relies on the use of common photomask sets (or at least one common photomask) to fabricate multiple photonic modules in a single wafer. Photonic modules in multiple wafers can be linked together into a communication platform using optical or electronic means.
    Type: Grant
    Filed: November 29, 2022
    Date of Patent: January 2, 2024
    Assignee: Lightmatter, Inc.
    Inventors: Nicholas C. Harris, Carl Ramey, Michael Gould, Thomas Graham, Darius Bunandar, Ryan Braid, Mykhailo Tymchenko
  • Patent number: 11852863
    Abstract: A mode multiplexing/demultiplexing optical circuit with a reduced inter-mode crosstalk is provided. A mode multiplexing/demultiplexing optical circuit includes a Port 1 through which light from a light source is input to a waveguide, a Port 3 through which light propagating through a first waveguide is output, a mode conversion unit located adjacent to the first waveguide, and configured to convert a first-order mode light input from the Port 3 to a second-order mode, and Port 2 configured to convert, via a waveguide located adjacent to the mode conversion unit, second-order mode light input to the mode conversion unit to a zeroth-order mode.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: December 26, 2023
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Junji Sakamoto, Toshikazu Hashimoto
  • Patent number: 11852866
    Abstract: An issue is directed to suppressing light interference occurring between a plurality of waveguides and providing waveguides at high densities. Means for solving the issue includes a plurality of cores (104) each configured to allow light to be transmitted therethrough, a clad (106) surrounding the plurality of cores (104) and smaller in refractive index for light than each of the cores (104), and a transmission suppression member (108) located between mutually adjacent two cores out of the plurality of cores (104) and configured to suppress transmission of light leaking from each of the cores.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: December 26, 2023
    Assignee: FICT LIMITED
    Inventors: Toshiki Iwai, Taiji Sakai
  • Patent number: 11846553
    Abstract: A temperature correcting pressure gauge which has a diaphragm having at least one surface coupled to a source of pressure to be measured, the diaphragm first surface having a first FBG from a first optical fiber attached in an appropriately sensitive region of the diaphragm, a FBG from a second optical fiber attached to the opposite surface from the first FBG, the first and second FBGs reflecting or transmitting optical energy of decreasing or increasing wavelength, respectively, in response to an applied pressure. The first and second FBGs have nominal operating wavelength ranges that are adjacent to each other but are exclusive ranges and the FBGs also have closely matched pressure coefficients and temperature coefficients.
    Type: Grant
    Filed: November 11, 2021
    Date of Patent: December 19, 2023
    Assignee: Intelligent Fiber Optic Systems Corporation
    Inventors: Vahid Sotoudeh, Behzad Moslehi, Joshua Kuehn, Richard J. Black
  • Patent number: 11841532
    Abstract: The disclosed structures and methods are directed to a chip for an optical gyroscope and methods of manufacturing of the chip for the optical gyroscope. The chip comprises a substrate, a waveguide having a first waveguide cladding layer and a waveguide core; and a ring resonator having a first ring cladding layer and a ring resonator core attached to the first ring cladding layer. A side wall of the ring resonator core forms an obtuse angle with an upper surface of the substrate. The method comprises depositing a first cladding layer on an upper surface of a silicon substrate; depositing a core layer; depositing a resist mask pattern to define a form of a ring resonator core and a form of a waveguide core; etching the core layer outside of the resist mask pattern; and stripping the resist mask pattern off.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: December 12, 2023
    Assignee: OSCPS MOTION SENSING INC.
    Inventors: Kazem Zandi, Yoann Jestin
  • Patent number: 11841533
    Abstract: Disclosed is a structure including a first waveguide core with a first end portion and a second waveguide core with a second end portion, which overlays and is physically separated from the first end portion. The structure includes a coupler configured for interlayer waveguide coupling. Specifically, the coupler includes an additional waveguide core stacked vertically between and physically separated from the first end portion and the second end portion. Optionally, the coupler includes multiple additional waveguide cores. The shapes of the various waveguide cores are configured in order to achieve mode matching so that optical signals pass between the first end portion of the first waveguide core and the second end portion of the second waveguide core through each additional waveguide core in sequence. Also disclosed is a structure including a crossing array implemented using couplers.
    Type: Grant
    Filed: March 31, 2022
    Date of Patent: December 12, 2023
    Assignee: GlobalFoundries U.S. Inc.
    Inventor: Yusheng Bian
  • Patent number: 11835759
    Abstract: An optical waveguide circuit includes: a ring waveguide; an input connection waveguide; an output connection waveguide; and an optical multiplexing/demultiplexing part that optically connects the ring waveguide with the input connection waveguide, and that optically connects the ring waveguide with the output connection waveguide. Further, at least one of the input connection waveguide and the output connection waveguide includes a plurality of curved waveguides, a sum total of products of curvature signs and bending angles of the curved waveguides and a sum total of a curvature sign and a bending angle of the ring waveguide have a same absolute value with signs opposite to each other, and rotation of a polarization plane of light generated in the ring waveguide and rotation of a polarization plane of light generated in the curved waveguides cancel each other out.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: December 5, 2023
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Noritaka Matsubara, Junichi Hasegawa
  • Patent number: 11835712
    Abstract: The present invention relates to a scanner provided with a vibratory beam on or in which is formed a phased array intended to extract according to either one of two parallel faces of the beam a light radiation that could be emitted by a light source.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: December 5, 2023
    Assignee: COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Laurent Mollard, Christel Dieppedale, Stéphane Fanget, Daivid Fowler
  • Patent number: 11835762
    Abstract: A waveguide mode filter. In some embodiments, the waveguide mode filter includes a first section of waveguide. The first section may have: a first end; a second end; a rate of change of curvature having a magnitude not exceeding 15/mm2 within the first section; a curvature having a magnitude of at most 0.03/mm at the first end; and a curvature having a magnitude of at least 0.1/mm at the second end.
    Type: Grant
    Filed: March 4, 2022
    Date of Patent: December 5, 2023
    Assignee: Rockley Photonics Limited
    Inventors: Abu Thomas, Andrea Trita, Jeffrey Driscoll
  • Patent number: 11830861
    Abstract: A semiconductor package includes a first optical transceiver, a second optical transceiver, a third optical transceiver, and a plasmonic waveguide. The first optical transceiver, the second optical transceiver, and the third optical transceiver are stacked in sequential order. The first optical transceiver and the third optical transceiver respectively at least one optical input/output portion for transmitting and receiving an optical signal. The plasmonic waveguide includes a first segment, a second segment, and a third segment optically coupled to one another. The first segment is embedded in the first optical transceiver. The second segment extends through the second optical transceiver. The third segment is embedded in the third optical transceiver. The first segment is optically coupled to the at least one optical input/output portion of the first optical transceiver and the third segment is optically coupled to the at least one optical input/output portion of the third optical transceiver.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: November 28, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Kuang Liao, Cheng-Chun Tsai, Chen-Hua Yu, Fang-Cheng Chen, Wen-Chih Chiou, Ping-Jung Wu
  • Patent number: 11822126
    Abstract: Embodiments herein describe a waveguide crossing that permits at least two optical signals to cross in two different directions. For example, one optical signal can propagate from left to right through the center of the waveguide crossing at the same time a second optical signal propagates up and down through the center of the crossing. In one embodiment, a circular disc is disposed at the center of the waveguide crossing through which the two (or more) optical signals pass. The shape of the circular disc can provide low insertion loss as the respective optical signals propagate between respective pairs of waveguides, as well as minimize cross talk between the two optical signals.
    Type: Grant
    Filed: March 8, 2022
    Date of Patent: November 21, 2023
    Assignee: Cisco Technology, Inc.
    Inventors: Tao Ling, Shiyi Chen
  • Patent number: 11815714
    Abstract: An apparatus includes a photonic integrated circuit having a first lenslet array and a first antenna element array forming a first pupil of the photonic integrated circuit and a second lenslet array and a second antenna element array forming a second pupil of the photonic integrated circuit, where the second pupil has a different size than the first pupil. The photonic integrated circuit also has a waveguide layer positioned between the first and second pupils, where the waveguide layer includes multiple waveguides configured to guide optical signals between antenna elements of the first antenna element array and antenna elements of the second antenna element array.
    Type: Grant
    Filed: March 9, 2022
    Date of Patent: November 14, 2023
    Assignee: Raytheon Company
    Inventors: Richard L. Kendrick, Joseph Marron, Stephen P. Palese
  • Patent number: 11815715
    Abstract: A balanced homodyne detection optical circuit according to the present disclosure is a planar optical waveguide circuit in which a circuit made of an optical waveguide including a dielectric or a semiconductor is formed on a substrate, the balanced homodyne detection optical circuit including an input port of local oscillator light and an input port of measurement light (squeezed light (including excitation light)), wherein a wavelength demultiplexing circuit which demultiplexes only the measurement light is arranged immediately after the input port of measurement light, a 50% multiplexing/demultiplexing circuit is arranged which causes squeezed light having been demultiplexed by the wavelength demultiplexing circuit and the local oscillator light to respectively branch at a branching ratio of 50% and to interfere with each other, and two output ports are arranged to which two outputs from the 50% multiplexing/demultiplexing circuit are guided.
    Type: Grant
    Filed: November 11, 2019
    Date of Patent: November 14, 2023
    Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATION
    Inventors: Takahiro Kashiwazaki, Takeshi Umeki, Osamu Tadanaga, Koji Embutsu, Nobutatsu Koshobu, Asuka Inoue, Takushi Kazama
  • Patent number: 11815422
    Abstract: An embodiment optical test circuit includes a first optical circuit and a second optical circuit formed on a substrate, an input optical waveguide optically connected to the first optical circuit and the second optical circuit, and an output optical waveguide optically connected to the first optical circuit and the second optical circuit. The optical test circuit also includes a light emitting diode optically connected to the input optical waveguide, and a photodiode optically connected to the output optical waveguide.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: November 14, 2023
    Assignee: Nippon Telegraph and Telephone Corporation
    Inventors: Hiroshi Fukuda, Toru Miura, Yoshiho Maeda
  • Patent number: 11815727
    Abstract: A bladed chassis system facilitates installation of the bladed chassis system and replacement of the blades at the chassis. For example, a front panel of the blade can be opened either upwardly or downwardly at the discretion of the user. Blades can be inserted and removed from the front and/or the rear of the bladed chassis system at the discretion of the user. Cables can be routed to the rear of the chassis system from either of two sides at the discretion of the user. The blades carried by the chassis have fiber management trays that can be rotationally oriented in any desired rotational position at the discretion of the user.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: November 14, 2023
    Assignee: COMMSCOPE TECHNOLOGIES LLC
    Inventors: Dennis Ray Wells, Rodney C. Schoenfelder, Cyle D. Petersen, Kamlesh G. Patel, Jonathan R. Kaml, Matthew Holmberg, James J. Solheid, Dennis Krampotich
  • Patent number: 11808976
    Abstract: Disclosed is a compact on-chip polarization splitter-rotator based on a Bezier curve gradient waveguide. The Bezier curve gradient waveguide structure is a standard SOI-based wafer structure, comprising a substrate, of which the bottom layer is buried with oxide (SiO2), and the top is composed of silicon waveguides, including a common output waveguide and a specially-structured waveguide containing Bessel curve boundaries. The common waveguide structure is composed of a cuboid waveguide, and the specially-structured waveguide is composed of an input region, an output region, a width-gradient waveguide (Bezier curve gradient structure) and a coupling region, where a width of the gradient waveguide is determined by a third-order Bezier curve, and the coupling region is composed of two asymmetrical waveguide regions.
    Type: Grant
    Filed: May 31, 2022
    Date of Patent: November 7, 2023
    Assignee: XI'AN UNIVERSITY OF POSTS & TELECOMMUNICATIONS
    Inventor: Zhanqiang Hui