Patents Examined by Christine Enad
  • Patent number: 11908920
    Abstract: A method of forming a semiconductor device includes: forming a fin protruding above a substrate; forming isolation regions on opposing sides of the fin; forming a dummy gate electrode over the fin; removing lower portions of the dummy gate electrode proximate to the isolation regions, where after removing the lower portions, there is a gap between the isolation regions and a lower surface of the dummy gate electrode facing the isolation regions; filling the gap with a gate fill material; after filling the gap, forming gate spacers along sidewalls of the dummy gate electrode and along sidewalls of the gate fill material; and replacing the dummy gate electrode and the gate fill material with a metal gate.
    Type: Grant
    Filed: April 18, 2022
    Date of Patent: February 20, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih-Yao Lin, Kuei-Yu Kao, Chih-Han Lin, Ming-Ching Chang, Chao-Cheng Chen
  • Patent number: 11908858
    Abstract: A semiconductor device includes a substrate including a first region, and a second region, a first gate structure and a second gate structure on the substrate of the first region, a third gate structure and a fourth gate structure on the substrate of the second region, a first interlayer insulating film on the substrate of the first region and including a first lower interlayer insulating film and a first upper interlayer insulating film, a second interlayer insulating film on the substrate of the second region and including a second lower interlayer insulating film and a second upper interlayer insulating film, a first contact between the first gate structure and the second gate structure and within the first interlayer insulating film, and a second contact formed between the third gate structure and the fourth gate structure and within the second interlayer insulating film.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: February 20, 2024
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung Soo Kim, Gi Gwan Park, Jung Hun Choi, Koung Min Ryu, Sun Jung Lee
  • Patent number: 11908915
    Abstract: A semiconductor device includes a gate structure disposed over a channel region and a source/drain region. The gate structure includes a gate dielectric layer over the channel region, one or more work function adjustment material layers over the gate dielectric layer, and a metal gate electrode layer over the one or more work function adjustment material layers. The one or more work function adjustment layers includes an aluminum containing layer, and a diffusion barrier layer is disposed at at least one of a bottom portion and a top portion of the aluminum containing layer. The diffusion barrier layer is one or more of a Ti-rich layer, a Ti-doped layer, a Ta-rich layer, a Ta-doped layer and a Si-doped layer.
    Type: Grant
    Filed: May 23, 2022
    Date of Patent: February 20, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shahaji B. More, Chandrashekhar Prakash Savant, Tien-Wei Yu, Chia-Ming Tsai
  • Patent number: 11901441
    Abstract: A method for manufacturing a semiconductor device includes forming a gate trench over a semiconductor fin, the gate trench including an upper portion and a lower portion. The method includes sequentially forming one or more work function layers, a capping layer, and a glue layer over the gate trench. The glue layer includes a first sub-layer and a second sub-layer that have respective different etching rates with respect to an etching solution. The method includes removing the second sub-layer while leaving a first portion of the first sub-layer filled in the lower portion of the gate trench.
    Type: Grant
    Filed: February 10, 2023
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jian-Jou Lian, Tzu Ang Chiang, Ming-Hsi Yeh, Chun-Neng Lin, Po-Yuan Wang, Chieh-Wei Chen
  • Patent number: 11894421
    Abstract: Various examples of an integrated circuit device and a method for forming the device are disclosed herein. In an example, a method includes receiving a workpiece that includes a substrate, and a device fin extending above the substrate. The device fin includes a channel region. A portion of the device fin adjacent the channel region is etched, and the etching creates a source/drain recess and forms a dielectric barrier within the source/drain recess. The workpiece is cleaned such that a bottommost portion of the dielectric barrier remains within a bottommost portion of the source/drain recess. A source/drain feature is formed within the source/drain recess such that the bottommost portion of the dielectric barrier is disposed between the source/drain feature and a remainder of the device fin.
    Type: Grant
    Filed: August 9, 2021
    Date of Patent: February 6, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.V
    Inventors: Feng-Ching Chu, Wei-Yang Lee, Yen-Ming Chen, Feng-Cheng Yang
  • Patent number: 11894277
    Abstract: A device includes a semiconductor substrate and a first gate stack over the semiconductor substrate, the first gate stack being between a first gate spacer and a second gate spacer. The device further includes a second gate stack over the semiconductor substrate between the first gate spacer and the second gate spacer and a dielectric material separating the first gate stack from the second gate stack. The dielectric material is at least partially between the first gate spacer and the second gate spacer, a first width of an upper portion of the dielectric material is greater than a second width of a lower portion of the dielectric material, and a third width of an upper portion of the first gate spacer is less than a fourth width of a lower portion of the first gate spacer.
    Type: Grant
    Filed: July 20, 2022
    Date of Patent: February 6, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Yao Lin, Chih-Han Lin, Shu-Uei Jang, Ya-Yi Tsai, Shu-Yuan Ku
  • Patent number: 11895847
    Abstract: A semiconductor device includes a substrate having a magnetic tunneling junction (MTJ) region and a logic region, a magnetic tunneling junction (MTJ) on the MTJ region and a first metal interconnection on the MTJ. Preferably, a top view of the MTJ includes a circle and a top view of the first metal interconnection includes an ellipse overlapping the circle.
    Type: Grant
    Filed: November 15, 2022
    Date of Patent: February 6, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Ting-Hsiang Huang, Yi-Chung Sheng, Sheng-Yuan Hsueh, Kuo-Hsing Lee, Chih-Kai Kang
  • Patent number: 11894829
    Abstract: In certain aspects, a chip includes a pad, and a first passivation layer, wherein a first portion of the first passivation layer extends over a first portion of the pad. The chip also includes a first metal layer between the first portion of the pad and the first portion of the first passivation layer. The chip further includes an under bump metallization (UBM) electrically coupled to a second portion of the pad.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: February 6, 2024
    Assignee: RF360 Singapore Pte. Ltd.
    Inventors: Ute Steinhaeusser, Niklaas Konopka, Alexander Landel
  • Patent number: 11894274
    Abstract: A method includes forming a first protruding semiconductor fin and a dummy fin protruding higher than top surfaces of isolation regions. The first protruding semiconductor fin is parallel to the dummy fin, forming a gate stack on a first portion of the first protruding semiconductor fin and a second portion of the dummy fin. The method further includes recessing a third portion of the first protruding semiconductor fin to form a recess, recessing an fourth portion of the dummy fin to reduce a height of the fourth portion of the dummy fin, and forming an epitaxy semiconductor region in the recess. The epitaxy semiconductor region is grown toward the dummy fin.
    Type: Grant
    Filed: June 30, 2022
    Date of Patent: February 6, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Yao Lin, Te-Yung Liu, Chih-Han Lin
  • Patent number: 11862564
    Abstract: A multi-layer line structure including a substrate, a lower layer Cu line located on the substrate, an upper layer Cu line located on an insulating layer including an inorganic film located on the lower layer Cu line and an organic resin film located on the inorganic film, and a via connection part located in a via connection hole running in an up-down direction through the insulating layer in an area where the lower layer Cu line and the upper layer Cu line overlap each other is provided. The via connection part includes a barrier conductive layer located on a part of the lower layer Cu line exposed to a bottom part of the via connection hole and on an inner wall of the via connection hole.
    Type: Grant
    Filed: June 21, 2021
    Date of Patent: January 2, 2024
    Assignee: DAI NIPPON PRINTING CO., LTD.
    Inventors: Hiroshi Kudo, Takamasa Takano
  • Patent number: 11862638
    Abstract: In an embodiment, a device includes: a first fin extending from a substrate; a second fin extending from the substrate; a gate spacer over the first fin and the second fin; a gate dielectric having a first portion, a second portion, and a third portion, the first portion extending along a first sidewall of the first fin, the second portion extending along a second sidewall of the second fin, the third portion extending along a third sidewall of the gate spacer, the third portion and the first portion forming a first acute angle, the third portion and the second portion forming a second acute angle; and a gate electrode on the gate dielectric.
    Type: Grant
    Filed: March 24, 2021
    Date of Patent: January 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shahaji B. More, Chandrashekhar Prakash Savant
  • Patent number: 11862706
    Abstract: Semiconductor devices and methods are provided. A semiconductor device according to the present disclosure includes a first transistor having a first gate dielectric layer, a second transistor having a second gate dielectric layer, and a third transistor having a third gate dielectric layer. The first gate dielectric layer includes a first concentration of a dipole layer material, the second gate dielectric layer includes a second concentration of the dipole layer material, and the third gate dielectric layer includes a third concentration of the dipole layer material. The dipole layer material includes lanthanum oxide, aluminum oxide, or yttrium oxide. The first concentration is greater than the second concentration and the second concentration is greater than the third concentration.
    Type: Grant
    Filed: May 27, 2022
    Date of Patent: January 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chia-Hao Pao, Chih-Hsuan Chen, Yu-Kuan Lin
  • Patent number: 11855193
    Abstract: A semiconductor device includes a gate electrode over a channel region of a semiconductor fin, first spacers over the semiconductor fin, and second spacers over the semiconductor fin. A lower portion of the gate electrode is between the first spacers. An upper portion of the gate electrode is above the first spacers. The second spacers are adjacent the first spacers opposite the gate electrode. The upper portion of the gate electrode is between the second spacers.
    Type: Grant
    Filed: January 17, 2022
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Jian-Jou Lian, Chun-Neng Lin, Ming-Hsi Yeh, Chieh-Wei Chen, Tzu-Ang Chiang
  • Patent number: 11855192
    Abstract: A method includes forming a fin structure including a plurality of first semiconductor layers and a plurality of second semiconductor layers alternately stacked over a substrate. A dummy gate structure is formed across the fin structure. The exposed second portions of the fin structure are removed. A selective etching process is performed, using a gas mixture including a hydrogen-containing gas and a fluorine-containing gas, to laterally recess the first semiconductor layers. Inner spacers are formed on opposite end surfaces of the laterally recessed first semiconductor layers. Source/drain epitaxial structures are formed on opposite end surfaces of the second semiconductor layers. The dummy gate structure is removed to expose the first portion of the fin structure. The laterally recessed first semiconductor layers are removed. A gate structure is formed to surround each of the second semiconductor layers.
    Type: Grant
    Filed: January 19, 2021
    Date of Patent: December 26, 2023
    Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD., TSMC NANJING COMPANY LIMITED
    Inventors: Han-Yu Lin, Fang-Wei Lee, Kai-Tak Lam, Raghunath Putikam, Tzer-Min Shen, Li-Te Lin, Pinyen Lin, Cheng-Tzu Yang, Tzu-Li Lee, Tze-Chung Lin
  • Patent number: 11855161
    Abstract: Methods and devices including an air gap adjacent a contact element extending to a source/drain feature of a device are described. Some embodiments of the method include depositing a dummy layer, which is subsequently removed to form the air gap. The dummy layer and subsequent air gap may be formed after a SAC dielectric layer such as silicon nitride is formed over an adjacent metal gate structure.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: I-Wen Wu, Chen-Ming Lee, Fu-Kai Yang, Mei-Yun Wang
  • Patent number: 11855091
    Abstract: The present disclosure relates to an integrated circuit (IC) that includes a boundary region defined between a low voltage region and a high voltage region, and a method of formation. In some embodiments, the integrated circuit comprises an isolation structure disposed in the boundary region of the substrate. A first polysilicon component is disposed over the substrate alongside the isolation structure. A boundary dielectric layer is disposed on the isolation structure. A second polysilicon component is disposed on the sacrifice dielectric layer.
    Type: Grant
    Filed: July 19, 2022
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Huan Chen, Chien-Chih Chou, Alexander Kalnitsky, Kong-Beng Thei, Ming Chyi Liu, Shih-Chung Hsiao, Jhih-Bin Chen
  • Patent number: 11855081
    Abstract: Semiconductor structures and methods are provided. A method according to the present disclosure includes providing a workpiece that includes a plurality of active regions including channel regions and source/drain regions, and a plurality of dummy gate stacks intersecting the plurality of active regions at the channel regions, the plurality of dummy gate stacks including a device portion and a terminal end portion. The method further includes depositing a gate spacer layer over the workpiece, anisotropically etching the workpiece to recess the source/drain regions and to form a gate spacer from the gate spacer layer, forming a patterned photoresist layer over the workpiece to expose the device portion and the recessed source/drain regions while the terminal end portion is covered, and after the forming of the patterned photoresist layer, epitaxially forming source/drain features over the recessed source/drain regions.
    Type: Grant
    Filed: July 16, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ming-Yang Huang, Yung Feng Chang, Tung-Heng Hsieh, Bao-Ru Young
  • Patent number: 11855092
    Abstract: In an embodiment, a method includes forming a plurality of semiconductor fins over a substrate, the plurality of semiconductor fins comprising a first fin, a second fin, a third fin, and a fourth fin; forming a first dielectric layer over the plurality of semiconductor fins, the first dielectric layer filling an entirety of a first trench between the first fin and the second fin; forming a second dielectric layer over the first dielectric layer, the second dielectric layer filling an entirety of a second trench between the second fin and the third fin, the forming the second dielectric layer comprising: forming an oxynitride layer; and forming an oxide layer; and forming a third dielectric layer over the second dielectric layer, the third dielectric layer filling an entirety of a third trench between the third fin and the fourth fin.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi Chen Ho, Yiting Chang, Lun-Kuang Tan, Chien Lin
  • Patent number: 11855093
    Abstract: A semiconductor device includes a substrate. The semiconductor device includes a fin that is formed over the substrate and extends along a first direction. The semiconductor device includes a gate structure that straddles the fin and extends along a second direction perpendicular to the first direction. The semiconductor device includes a first source/drain structure coupled to a first end of the fin along the first direction. The gate structure includes a first portion protruding toward the first source/drain structure along the first direction. A tip edge of the first protruded portion is vertically above a bottom surface of the gate structure.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Shih-Yao Lin, Chao-Cheng Chen, Chih-Han Lin, Ming-Ching Chang, Wei-Liang Lu, Kuei-Yu Kao
  • Patent number: 11855179
    Abstract: A semiconductor device is described. An isolation region is disposed on the substrate. A plurality of channels extend through the isolation region from the substrate. The channels including an active channel and an inactive channel. A dummy fin is disposed on the isolation region and between the active channel and the inactive channel. An active gate is disposed over the active channel and the inactive channel, and contacts the isolation region. A dielectric material extends through the active gate and contacts a top of the dummy fin. The inactive channel is a closest inactive channel to the dielectric material. A long axis of the active channel extends in a first direction. A long axis of the active gate extends in a second direction. The active channel extends in a third direction from the substrate. The dielectric material is closer to the inactive channel than to the active channel.
    Type: Grant
    Filed: June 3, 2021
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: Shih-Yao Lin, Hsiao Wen Lee, Ya-Yi Tsai, Shu-Uei Jang, Chih-Han Lin, Shu-Yuan Ku