Patents Examined by Colleen J O Toole
  • Patent number: 11863167
    Abstract: A drive circuit for a power switching transistor includes a first pull-up drive transistor connected in parallel with a second pull-up drive transistor, a first pull-down drive transistor coupled to the first and second pull-up drive transistors in series to drive the power switching transistor. When control signal is at a high level, the first pull-up driver is turned on, and the first pull-down driver is turned off. The second pull-up drive transistor being in turn-on or turn-off state is determined by comparing voltage of the power supply with the threshold value. When voltage of the power supply is lower than the threshold value, the first and second pull-up drive transistor are driven together. When voltage of the power supply is higher than the threshold value, the second pull-up driving transistor is turned on only after the driving output is slightly larger than the Miller plateau voltage.
    Type: Grant
    Filed: October 16, 2022
    Date of Patent: January 2, 2024
    Assignee: Nanjing Greenchip Semiconductor Co., Ltd.
    Inventor: Jianye Qiu
  • Patent number: 11843370
    Abstract: A gate of the first p-type MOS transistor and the first and second control circuits are electrically coupled to a first node. The first control circuit lowers a voltage or the first node between a first time and a second time at which the first p-type MOS transistor is off. The second control circuit lowers the voltage of the first node between a third time and a fourth time at which the first p-type MOS transistor is on. The second time is later than the first time. The fourth time is later than the second and third times. The first p-type MOS transistor is turned on during a first period. A voltage decrease amount of the first node per unit time in the first control circuit is greater than that in the second control circuit.
    Type: Grant
    Filed: September 8, 2022
    Date of Patent: December 12, 2023
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Electronic Devices & Storage Corporation
    Inventor: Tsuneyuki Hayashi
  • Patent number: 11817850
    Abstract: A capacitor-insulated semiconductor relay includes an RC oscillation circuit, a waveform regulation circuit, a booster circuit, a charging/discharging circuit, and an output circuit. The RC oscillation circuit generates first and second signals that are inverse in phase to each other. The waveform regulation circuit increases rise and fall times of the first signal, and rise and fall times of the second signal. Output signals from the waveform regulation circuit are respectively inputted to first and second high dielectric strength capacitors and that are provided in the booster circuit and connected in parallel to each other. The booster circuit receives the output signals from the waveform regulation circuit to generate a predetermined voltage. The output circuit is driven based on the predetermined voltage.
    Type: Grant
    Filed: February 12, 2020
    Date of Patent: November 14, 2023
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Yu Bungi, Yasushi Konishi, Hirotaka Masaki
  • Patent number: 11811243
    Abstract: A system to power pressure pumps and auxiliary equipment for oil and gas operations. The system includes a mobile system controller and energy storage unit electrically connected to pressure pumping and auxiliary loads. The system can also include a power generation source. One application of the technology is to pump fluids to an oil and gas end user which can be an oil or gas well, pipeline or plant. The system can be modularized and can be fully mobile and transportable by a variety of means.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: November 7, 2023
    Assignee: ALLOY ENERGY SOLUTIONS INC.
    Inventors: Don Luft, Thomas Vis, Jason Cockerill
  • Patent number: 11804846
    Abstract: A phase-locked loop (PLL) includes a phase-frequency detector that compares a reference signal to a feedback signal. The difference in phase between the reference signal and the feedback signal is encoded as digital pulses on one or more outputs of the phase-frequency detector. The digital output pulses from the phase-frequency detector are duplicated and delayed multiple times in a non-overlapping manner before being input to the loop filter or voltage controlled oscillator (VCO) of the PLL.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: October 31, 2023
    Assignee: Cadence Design Systems, Inc.
    Inventors: George Chung Fai Ng, Marcus Van Ierssel
  • Patent number: 11804847
    Abstract: A circuit includes a programmable frequency divider which receives a high-speed clock, fin, as an input and which provides a modulated reference clock as an output; a Sigma-Delta modulator which receives a Frequency Control Word (FCW) and which is connected to the programmable frequency divider to receive the modulated reference clock as a sample clock and to control an average frequency of the modulated reference clock; and an integer-N Phase Lock Loop (PLL) which receives the modulated reference clock and outputs a clock output.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: October 31, 2023
    Assignee: Ciena Corporation
    Inventors: Sadok Aouini, Matthew Mikkelsen, Naim Ben-Hamida, Mahdi Parvizi, Tingjun Wen, Calvin Plett
  • Patent number: 11799425
    Abstract: The invention relates to a mixer for generating an analog output signal XOUT from an analog input signal XIN using a mixing signal having a mixing frequency fMIX, the mixer comprising: a scaler being configured to sample the analog input signal XIN at a plurality of discrete points in time k with a sampling frequency fS to obtain a sampled analog input signal XIN[k] having a continuous signal value, and to generate the analog output signal XOUT having a continuous signal value by scaling the sampled analog input signal XIN[k] on the basis of a plurality of scaling coefficients A[k], wherein the scaling coefficients A[k] are a time-discrete representation of the mixing signal.
    Type: Grant
    Filed: October 13, 2020
    Date of Patent: October 24, 2023
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Patrick Vandenameele, Koen Cornelissens, Pieter Nuyts
  • Patent number: 11791820
    Abstract: An output circuit includes: a first input transistor that is provided between a first power supply line and a first intermediate node; a second input transistor that is provided between a second intermediate node and a second power supply line; a first cascode transistor that is provided between the first intermediate node and an output node, and receives a first clip voltage from a first voltage generation circuit; a second cascode transistor that is provided between the output node and the second intermediate node, and receives a second clip voltage from a second voltage generation circuit; a first switch transistor that is provided between the first intermediate node and a gate of the first cascode transistor, and turns on during power down; and a second switch transistor that is provided between the second intermediate node and a gate of the second cascode transistor, and turns on during power down.
    Type: Grant
    Filed: August 25, 2022
    Date of Patent: October 17, 2023
    Assignee: SOCIONEXT INC.
    Inventors: Takumi Funayama, Akiyoshi Matsuda
  • Patent number: 11777489
    Abstract: A disclosed circuit arrangement detects the supply voltage level to the “device” (SoC, chip, SiP, etc.) and adjusts bias voltages to receiver and transmitter circuits of the device to levels suitable for the device in response to the supply voltage ramping-up during a power-on reset (“POR”) sequence. The circuitry holds the receiver output at a constant logic value while the supply voltage is ramping up and the POR signal is asserted. The disclosed circuitry also protects the transceiver as the voltage domain of the input signal is unknown and the voltage between any two terminals of a transistor of the transceiver cannot exceed a certain level.
    Type: Grant
    Filed: May 18, 2022
    Date of Patent: October 3, 2023
    Assignee: XILINX, INC.
    Inventors: Hari Bilash Dubey, Milind Goel, Venkata Siva Satya Prasad Babu Akurathi, Sabarathnam Ekambaram, Sasi Rama Subrahmanyam Lanka
  • Patent number: 11763855
    Abstract: Methods and apparatuses are provided for aligning read data in a stacked semiconductor device. An example apparatus includes a stacked semiconductor device comprising stacked first and second die. The stacked semiconductor device includes a first path having a first align (first die) and second align (second die) circuits for providing read data from the second die and a second path having a first replica align (first die) and second replica align (second die) circuits. During a timing align operation, a first control circuit sets the first align and replica align circuits to a first delay value based on a propagation delay of a clock signal through the second replica align circuit. After setting of the first delay value, a second control circuit sets the second align and replica align circuits to a second delay value based on a difference in propagation delays through the first and second replica align circuits.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: September 19, 2023
    Assignee: Micron Technology, Inc.
    Inventor: Seiji Narui
  • Patent number: 11742850
    Abstract: According to one embodiment, a data transmission device includes a buffer circuit configured to set a voltage level of a data signal to high or low, a power supply line for supplying a power supply voltage to the buffer circuit, a buffer control circuit configured to control a switching operation of the buffer circuit, a current circuit configured to make a dummy current flow to the power supply line, and a current control circuit configured to control the dummy current based on one of the set voltage level and a transmission timing of the data signal.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: August 29, 2023
    Assignee: Kioxia Corporation
    Inventor: Toshihiro Yagi
  • Patent number: 11728737
    Abstract: An apparatus may include an electric power converter and pre-charge circuitry. The electric power converter may include a first circuit, a second circuit and an energy transfer device. The first circuit may be connected to a power supply. The second circuit may be connected to a load. The energy transfer device may have a first side connected to the first circuit and a second side connected to the second circuit. The pre-charge circuitry may be connected to a capacitor of the first circuit. The capacitor may be connected to the first side of the energy transfer device. The pre-charge circuitry may be configured to charge the capacitor during a pre-charge mode of the electric power converter. The electric power converter may be configured to exit the pre-charge mode and enter an energy transfer mode responsive to a charge level of the capacitor reaching a threshold pre-charge level.
    Type: Grant
    Filed: September 20, 2020
    Date of Patent: August 15, 2023
    Assignee: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Daniele Miatton, Kyrylo Cherniak, Hayri Verner Hasou, Erwin Huber, Sergio Morini, Volha Subotskaya
  • Patent number: 11728730
    Abstract: A power converter is disclosed. The power converter includes a Single-Input-Multiple-Output (SIMO) device includes a first transistor connected to an input and a first end of an inductor, a second transistor connected to a second end of the inductor and a first output, and a third transistor connected to the second end of the inductor and a second output. The power converter also includes a controller connected to the SIMO device and is configured to maintain a minimum inductor current through the inductor between charging cycles and to cause the minimum inductor current to transition to a charging inductor current during a charging cycle. The charging inductor current is based on a difference between an output voltage signal and a target voltage signal.
    Type: Grant
    Filed: March 18, 2022
    Date of Patent: August 15, 2023
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Cary Delano, Gaurav Mital
  • Patent number: 11728647
    Abstract: Systems and methods are described for active harmonics cancellation. A wireless charging apparatus includes a wireless-power transfer circuit comprising a wireless-power transfer coil configured to generate or couple to a magnetic field to transfer or receive power and a plurality of tuning capacitors electrically coupled to the wireless-power transfer coil. The apparatus also includes a power converter circuit electrically coupled to the wireless-power transfer circuit. Additionally, the apparatus includes a signal generation circuit different from the power converter circuit and electrically coupled to one or more nodes between capacitors of the plurality of tuning capacitors. The signal generation circuit is configured to generate and inject a signal into the wireless-power transfer circuit at the nodes between the capacitors. The signal generation circuit includes a rejection filter tuned to an operating frequency of the wireless-power transfer coil.
    Type: Grant
    Filed: September 15, 2022
    Date of Patent: August 15, 2023
    Assignee: WiTricity Corporation
    Inventors: Marcel Fischer, Mircea-Florian Vancu, Hans Peter Widmer, Prasanth Venugopal
  • Patent number: 11716074
    Abstract: A high-speed comparator circuit is provided. The circuit includes an amplifier portion, a latch portion, and a negative capacitance portion. The amplifier portion includes an input coupled to receive an analog signal and an output. The latch portion is coupled to the amplifier portion. The latch portion is configured to provide at the output a digital value based on the analog signal. The negative capacitance portion is coupled to the output. The negative capacitance portion is configured to cancel parasitic capacitance coupled at the first output.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: August 1, 2023
    Assignee: NXP B.V.
    Inventors: Shagun Bajoria, Lucien Johannes Breems
  • Patent number: 11705900
    Abstract: Circuitry for controlling current between a load and a power supply, the circuitry comprising: an output stage comprising: an input node configured to be coupled to the power supply; and an output node configured to be coupled to the load; and one or more control nodes for controlling a conduction path between the input node and the output node; and protection circuitry coupled to the one or more control nodes, the protection circuitry configured to break the conduction path between the input node and the output node when a load voltage at the output node exceeds a supply voltage at the input node, wherein the protection circuitry comprises: an active protection circuit configured to break the conduction path when the supply voltage exceeds an operational threshold of the active protection circuit; and a passive protection circuit configured to break the conduction path when the supply voltage is below an operation threshold of the active protection circuit.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: July 18, 2023
    Assignee: Cirrus Logic, Inc.
    Inventors: Andrew Buist, Mark McCloy-Stevens, Dave Smith, Gordon Russell, Huy Binh Le
  • Patent number: 11705902
    Abstract: A supply voltage detecting circuit has a voltage detection circuit and a current clamping circuit. The voltage detection circuit receives and detects a supply voltage and is used to detect to generate a low-voltage detection signal. When the supply voltage is lower than a set level, the low voltage detection signal output by the voltage detection circuit turns off the current clamping circuit, and a transistor current flowing through the voltage detection circuit is proportional to the supply voltage; and when the supply voltage is higher than or equal to the set level, the low voltage detection signal output by the voltage detection circuit turns on the current clamping circuit, and the current clamping circuit provides a constant current to maintain the operation of the voltage detection circuit, wherein the transistor current flowing through the voltage detection circuit is proportional to the constant current.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: July 18, 2023
    Assignee: NUVOTON TECHNOLOGY CORPORATION
    Inventor: Ming-Hsin Huang
  • Patent number: 11686746
    Abstract: A low power comparator and a self-regulated device for adjusting power saving level of an electronic device are provided. The low power comparator includes an input differential pair circuit, a self-regulated device, and a tail current switch. The input differential pair circuit is configured to receive input signals to be compared. The self-regulated device is coupled to the input differential pair circuit and includes a self-regulated circuit which has a first transistor with a first threshold voltage and a second transistor with a second threshold voltage and is configured to adjust a power saving level of the low-power comparator according to the first threshold voltage and the second threshold voltage. The tail current switch is coupled to the input differential pair circuit through the self-regulated circuit to provide a constant current to the input differential pair circuit.
    Type: Grant
    Filed: February 16, 2022
    Date of Patent: June 27, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yung-Chow Peng, Chung-Peng Hsieh
  • Patent number: 11683938
    Abstract: A magnetic field controlled transistor circuit includes a first electrode, a second electrode, and a channel including a magneto-resistive material. The channel is arranged between the first and second electrodes and electrically coupled to the first and second electrodes. The transistor circuit further includes a third electrode, a fourth electrode, and a control layer including an electrically conductive material. The control layer is arranged between the third and fourth electrodes and electrically coupled to the third and fourth electrodes. In addition, an insulating layer including an insulating material is provided. The insulating layer is arranged between the channel and the control layer and configured to electrically insulate the channel from the control layer. A related method for operating a transistor circuit and a corresponding design structure are also provided.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: June 20, 2023
    Assignee: International Business Machines Corporation
    Inventors: Cezar Bogdan Zota, Bernd W. Gotsmann
  • Patent number: 11652477
    Abstract: A voltage tracking circuit is provided and includes first and second P-type transistors and a voltage reducing circuit. The drain of the first P-type transistor is coupled to a first voltage terminal. The voltage reducing circuit is coupled between the first voltage terminal and the gate of the first P-type transistor. The voltage reducing circuit reduces a first voltage at the first voltage terminal by a modulation voltage to generate a control voltage and provides the control voltage to the gate of the first P-type transistor. The gate of the second P-type transistor is coupled to the first voltage terminal, and the drain thereof is coupled to a second voltage terminal. The source of the first P-type transistor and the source of the second P-type transistor are coupled to the output terminal of the voltage tracking circuit. The output voltage is generated at the output terminal.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: May 16, 2023
    Assignee: Vanguard International Semiconductor Corporation
    Inventors: Shao-Chang Huang, Ching-Ho Li, Kai-Chieh Hsu, Chun-Chih Chen