Patents Examined by Dale E Page
  • Patent number: 11848293
    Abstract: A semiconductor package includes a sequential stack of first and second semiconductor chips, and a first internal connection member that connects the first and second semiconductor chips to each other. The first semiconductor chip includes a first substrate that has a first top surface and a first bottom surface that are opposite to each other, and a first conductive pad on the first top surface. The second semiconductor chip includes a second substrate that has a second top surface and a second bottom surface that are opposite to each other, and a second conductive bump on the second bottom surface. The first internal connection member connects the first conductive pad to the second conductive bump. The first conductive pad has a first width in one direction. The second conductive bump has a second width in the one direction. The first width is smaller than the second width.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: December 19, 2023
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sunkyoung Seo, Teak Hoon Lee, Chajea Jo
  • Patent number: 11848363
    Abstract: A method of forming a semiconductor device includes forming a gate structure on a semiconductor substrate. A gate spacer is formed adjacent to the gate structure. The gate spacer includes a first dielectric layer and a second dielectric layer on the first dielectric layer. A plasma treatment is performed to the second dielectric layer. After performing the plasma treatment, at least a portion of the second dielectric layer is removed such that a sidewall of the first dielectric layer is exposed. A dielectric cap is formed on the gate spacer.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: December 19, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chung-Ting Li, Jen-Hsiang Lu, Chih-Hao Chang
  • Patent number: 11843057
    Abstract: The present invention disclosures an oxide semiconductor transistor and a method of fabricating the same. The oxide semiconductor transistor according to an embodiment of the present invention includes a first gate electrode formed on a substrate; a first gate insulating film formed using a solution process on the first gate electrode; a source electrode and a drain electrode separately formed on one surface of the first gate insulating film; an oxide semiconductor film formed using a solution process on the first gate insulating film and the source and drain electrodes; a second gate insulating film formed using a solution process on the oxide semiconductor film; pixel electrodes separately formed on one surface of the second gate insulating film and electrically connected to the source and drain electrodes, respectively; and a second gate electrode formed on the second gate insulating film.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: December 12, 2023
    Assignee: UNIVERSITY-INDUSTRY COOPERATION GROUP OF KYUNG HEE UNIVERSITY
    Inventors: Jin Jang, Tae Hun Kim
  • Patent number: 11842826
    Abstract: Cables, cable connectors, and support structures for cantilever package and/or cable attachment may be fabricated using additive processes, such as a coldspray technique, for integrated circuit assemblies. In one embodiment, cable connectors may be additively fabricated directly on an electronic substrate. In another embodiment, seam lines of cables and/or between cables and cable connectors may be additively fused. In a further embodiment, integrated circuit assembly attachment and/or cable attachment support structures may be additively formed on an integrated circuit assembly.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: December 12, 2023
    Assignee: Intel Corporation
    Inventors: Adel Elsherbini, Feras Eid, Johanna Swan, Georgios Dogiamis
  • Patent number: 11842899
    Abstract: In a method of cutting a fine pattern, a line structure is formed on a substrate. The line structure extends in a first direction, and includes a pattern and a first mask. The pattern and the first mask include different materials. A sacrificial layer is formed on the substrate to cover the line structure. The sacrificial layer is partially etched to form a first opening partially overlapping the line structure in a vertical direction. A portion of the first mask, an upper portion of the pattern and/or a portion of the sacrificial layer under the first opening are partially etched using an etching gas having no etching selectivity among the pattern, the first mask and the sacrificial layer. A lower portion of the pattern under the upper portion thereof is removed to divide the pattern into a plurality of pieces spaced apart from each other in the first direction.
    Type: Grant
    Filed: September 16, 2020
    Date of Patent: December 12, 2023
    Inventors: Sanggyo Chung, Jiseung Lee, Kyoungha Eom, Hyunchul Lee
  • Patent number: 11843027
    Abstract: A method of manufacturing a semiconductor device is disclosed. The method includes laminating a thermally decomposable organic material on a substrate by supplying a material gas into a container in which the substrate having a first recess and a second recess, which has a wider width than a width of the first recess, are formed, fluidizing the organic material laminated on the substrate by heating the substrate to a first temperature, and removing the organic material laminated in the second recess.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: December 12, 2023
    Assignee: Tokyo Electron Limited
    Inventors: Tatsuya Yamaguchi, Syuji Nozawa
  • Patent number: 11837473
    Abstract: Methods for adjusting a work function of a structure in a substrate leverage near surface doping. In some embodiments, a method for adjusting a work function of a structure in a substrate may include growing an epitaxial layer on surfaces of the structure to form a homogeneous passivation region as part of a substrate material of the substrate and performing a dopant diffusion process to further embed the dopants into surfaces of the structure to adjust a work function of the structure, wherein the dopant diffusion process is performed at less than approximately 450 degrees Celsius.
    Type: Grant
    Filed: May 4, 2022
    Date of Patent: December 5, 2023
    Assignee: APPLIED MATERIALS, INC.
    Inventor: Taichou Papo Chen
  • Patent number: 11837568
    Abstract: A bonding structure is provided, wherein the bonding structure includes a first substrate, a second substrate, a first adhesive layer, a second adhesive layer, and a silver feature. The second substrate is disposed opposite to the first substrate. The first adhesive layer is disposed on the first substrate. The second adhesive layer is disposed on the second substrate and opposite the first adhesive layer. The silver feature is disposed between the first adhesive layer and the second adhesive layer. The silver feature includes a silver nano-twinned structure that includes twin boundaries that are arranged in parallel. The parallel-arranged twin boundaries include 90% or more [111] crystal orientation.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: December 5, 2023
    Assignee: AG MATERIALS TECHNOLOGY CO., LTD.
    Inventors: Tung-Han Chuang, Hsing-Hua Tsai
  • Patent number: 11833503
    Abstract: The present disclosure provides methods and compositions for surface functionalization of solid substrates. The compositions include functionalized silanes and nucleic acid constructs which may react to immobilize the nucleic acid constructs on the surface on the solid substrate. The disclosure also provides methods for immobilization of silanes and nucleic acid constructs on the surface of the substrate.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: December 5, 2023
    Assignee: InSilixa, Inc.
    Inventors: Andrea Cuppoletti, Arjang Hassibi, Lei Pei, Yang Liu, Kshama Jirage, Arun Manickam
  • Patent number: 11837476
    Abstract: A flip-chip package and a method for assembling a flip-chip package includes positioning the die on a substrate and introducing an underfill material into a space between the die and the substrate, where a portion of the underfill material extends beyond an edge of the die and forms a fillet that at least partially surrounds the die. The underfill material is cured, and a portion of the fillet is removed to reduce the area of the fillet.
    Type: Grant
    Filed: May 15, 2020
    Date of Patent: December 5, 2023
    Assignee: WESTERN DIGITAL TECHNOLOGIES, INC.
    Inventors: Yazhou Zhang, Hope Chiu, Jiandi Du, Paul Qu
  • Patent number: 11839083
    Abstract: In a method for forming a semiconductor device, a channel structure is formed that extends from a side of a substrate, where the channel structure includes sidewalls and a bottom region. The channel structure further includes a bottom channel contact that is positioned at the bottom region and a channel layer that is formed along the sidewalls and over the bottom channel contact. A high-k layer is formed over the channel layer along the sidewalls of the channel structure and over the bottom channel contact.
    Type: Grant
    Filed: October 22, 2021
    Date of Patent: December 5, 2023
    Assignee: Yangtze Memory Technologies Co., Ltd.
    Inventors: Yingjie Ouyang, Zhiliang Xia, Lei Jin, Qiguang Wang, Wenxi Zhou, Zhongwang Sun, Rui Su, Yueqiang Pu, Jiwei Cheng
  • Patent number: 11837502
    Abstract: A method of forming a semiconductor device includes forming a first dielectric layer over a front side of a wafer, the wafer having a plurality of dies at the front side of the wafer, the first dielectric layer having a first shrinkage ratio smaller than a first pre-determined threshold; curing the first dielectric layer at a first temperature, where after curing the first dielectric layer, a first distance between a highest point of an upper surface of the first dielectric layer and a lowest point of the upper surface of the first dielectric layer is smaller than a second pre-determined threshold; thinning the wafer from a backside of the wafer; and performing a dicing process to separate the plurality of dies into individual dies.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: December 5, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Meng-Che Tu, Wei-Chih Chen, Sih-Hao Liao, Yu-Hsiang Hu, Hung-Jui Kuo, Chen-Hua Yu
  • Patent number: 11830835
    Abstract: A semiconductor chip includes a chip pad arranged at a surface of the semiconductor chip. A dielectric layer is arranged at the surface of the semiconductor chip. The dielectric layer has an opening within which a contact portion of the chip pad is exposed, the opening having at least one straight side. The dielectric layer includes a solder flux outgassing trench arranged separate from and in the vicinity of the at least one straight side of the opening and that extends laterally beyond sides of the opening adjoining the straight side.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: November 28, 2023
    Assignee: Infineon Technologies AG
    Inventors: Michael Stadler, Paul Armand Asentista Calo
  • Patent number: 11830847
    Abstract: According to one embodiment, a manufacturing method of a semiconductor device is provided. The manufacturing method includes removing a portion of an edge region from a front surface of a first substrate to form a notch in the edge region; bonding the front surface of the first substrate and a front surface of a second substrate together to forma stacked substrate, wherein the stack substrate includes an opening at a position corresponding to the notch; and filling the opening with an embedding member.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: November 28, 2023
    Assignee: KIOXIA CORPORATION
    Inventor: Gen Toyota
  • Patent number: 11830816
    Abstract: Methods, systems, and devices for reduced resistivity for access lines in a memory array are described. A first metal layer may be formed above a via that is configured to couple an access line of a memory array with a corresponding driver. The first metal layer may be oxidized, and then a second metal layer may be formed above the oxidized first metal layer. One or more access lines of the memory device may be formed from the second metal layer, the oxidized first metal layer, or both.
    Type: Grant
    Filed: August 14, 2020
    Date of Patent: November 28, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Lei Wei, Adam Thomas Barton
  • Patent number: 11830729
    Abstract: Exemplary methods of semiconductor processing may include providing a boron-and-carbon-and-nitrogen-containing precursor to a processing region of a semiconductor processing chamber. A substrate may be disposed within the processing region of the semiconductor processing chamber. The methods may include generating a capacitively-coupled plasma of the boron-and-carbon-and-nitrogen-containing precursor. The methods may include forming a boron-and-carbon-and-nitrogen-containing layer on the substrate. The boron-and-carbon-and-nitrogen-containing layer may be characterized by a dielectric constant below or about 3.5.
    Type: Grant
    Filed: January 8, 2021
    Date of Patent: November 28, 2023
    Assignee: Applied Materials, Inc.
    Inventors: Zeqing Shen, Bo Qi, Abhijit Basu Mallick, Nitin K. Ingle
  • Patent number: 11832483
    Abstract: A display device comprises a first electrode of a (1-1)-th subpixel, a first electrode of a (1-2)-th subpixel, a first electrode of a (2-1)-th subpixel, and a first electrode of a (2-2)-th subpixel; a (1-1)-th welding electrode connected to the first electrode of the (1-1)-th subpixel, a (1-2)-th welding electrode connected to the first electrode of the (1-2)-th subpixel, a (2-1)-th welding electrode connected to the first electrode of the (2-1)-th subpixel, and a (2-2)-th welding electrode connected to the first electrode of the (2-2)-th subpixel; and a first repair line overlapping the (1-1)-th welding electrode and the (2-1)-th welding electrode and a second repair line overlapping the (1-2)-th welding electrode and the (2-2)-th welding electrode, wherein the first repair line and the second repair line are disposed on different layers with at least one insulating layer interposed therebetween.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: November 28, 2023
    Assignee: LG DISPLAY CO., LTD.
    Inventors: Yoohwan Kim, Sungho Cho, Hyunjae Yoo
  • Patent number: 11830930
    Abstract: Various examples of a circuit device that includes gate stacks and gate seals are disclosed herein. In an example, a substrate is received that has a fin extending from the substrate. A placeholder gate is formed on the fin, and first and second gate seals are formed on sides of the placeholder gate. The placeholder gate is selectively removed to form a recess between side surfaces of the first gate seal and the second gate seal. A functional gate is formed within the recess and between the side surfaces of the first gate seal and the second gate seal.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: November 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Sheng-Chou Lai, Tsung-Yu Chiang
  • Patent number: 11824077
    Abstract: In some embodiments, a semiconductor device is provided. The semiconductor device includes an epitaxial structure having a group IV chemical element disposed in a semiconductor substrate, where the epitaxial structure extends into the semiconductor substrate from a first side of the semiconductor substrate. A photodetector is at least partially arranged in the epitaxial structure. A first capping structure having a first capping structure chemical element that is different than the first group IV chemical element covers the epitaxial structure on the first side of the semiconductor substrate. A second capping structure is arranged between the first capping structure and the epitaxial structure, where the second capping structure includes the group IV chemical element and the first capping structure chemical element.
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: November 21, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Po-Chun Liu, Chung-Yi Yu, Eugene Chen
  • Patent number: 11824023
    Abstract: A semiconductor chip includes a semiconductor substrate having a first surface and a second surface opposite to the first surface. An active layer is disposed in a portion of the semiconductor substrate adjacent to the first surface. A through electrode extends in the semiconductor substrate in a vertical direction. The through electrode has a lower surface connected to the active layer and an upper surface positioned at a level lower than a level of the second surface of the semiconductor substrate. A passivation layer is disposed on the second surface of the semiconductor substrate. A bonding pad is arranged on a portion of the passivation layer and the upper surface of the through electrode. The bonding pad has a cross-section with a “T” shape in the vertical direction. The bonding pad is connected to the through electrode.
    Type: Grant
    Filed: September 3, 2021
    Date of Patent: November 21, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Wonkyun Kwon, Chulyong Jang