Patents Examined by Damian A Hillman
  • Patent number: 8906768
    Abstract: For the formation of a stressor on one or more of a source and drain defined on a fin of FINFET semiconductor structure, a method can be employed including performing selective epitaxial growth (SEG) on one or more of the source and drain defined on the fin, separating the fin from a bulk silicon substrate at one or more of the source and drain, and further performing SEG on one or more of the source and drain to form a wrap around epitaxial growth stressor that stresses a channel connecting the source and drain. The formed stressor can be formed so that the epitaxial growth material defining a wrap around configuration connects to the bulk substrate. The formed stressor can increase mobility in a channel connecting the defined source and drain.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 9, 2014
    Assignee: GLOBALFOUNDRIES, Inc.
    Inventors: Hoong Shing Wong, Min-hwa Chi
  • Patent number: 8906784
    Abstract: A method of manufacturing a modified structure comprising a semiconducting modified graphene layer on a substrate, comprising the subsequent following steps: supply of an initial structure comprising at least one substrate, formation of a graphene layer on the substrate, hydrogenation of the initial structure by exposure to atomic hydrogen, characterized in that the hydrogenation step of the graphene layer is done with an exposure dose between 100 and 4000 Langmuirs, and forms a modified graphene layer.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: December 9, 2014
    Assignee: Commissariat á l'Energie Atomique et aux Énergies Alternatives
    Inventors: Shirley Chiang, Hanna Enriquez, Hamid Oughaddou, Patrick Soukiassian, Antonio Tejeda Gala, Sébastien Vizzini
  • Patent number: 8906808
    Abstract: A metal mask having an etching pattern having a very high verticality is formed, and an etching shape having a very high verticality is formed by etching a semiconductor with the metal mask as a mask. A resist film patterned with a reversal pattern obtained by reversing an etching pattern is formed on a semiconductor (resist film forming process, S100), a metal paste is filled in the reversal pattern of the resist film (metal paste filling process, S200), a metal mask having the etching pattern is formed by removing the resist film while baking the metal paste by a heating control (metal mask forming process, S300), and plasma etching is performed on the semiconductor by using the metal mask (etching process, S400).
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: December 9, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Ryuichi Takashima, Yoshinobu Ooya
  • Patent number: 8901714
    Abstract: An integrated circuit device includes a semiconductor body, active components formed over the semiconductor body, one or more seal rings surrounding the active components, and a signal line. One or more of the seal rings are configured to provide the primary return path for current flowing through the signal line.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: December 2, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsiao-Tsung Yen, Yu-Ling Lin, Cheng-Wei Luo, Chin-Wei Kuo, Chewn-Pu Jou, Min-Chie Jeng
  • Patent number: 8901751
    Abstract: A semiconductor device, includes: a connection member including a first pad formed on a principal surface thereof; a semiconductor chip including a circuit-formed surface on which a second pad is formed, the chip mounted on the connection member so that the circuit-formed surface faces the principal surface; and a solder bump that connects the first and second pads and is made of metal containing Bi and Sn, wherein the bump includes a first interface-layer formed adjacent to the second pad, a second interface-layer formed adjacent to the first pad, a first intermediate region formed adjacent to either one of the interface-layers, and a second intermediate region formed adjacent to the other one of the interface-layers and formed adjacent to the first intermediate region; Bi-concentration in the first intermediate region is higher than a Sn-concentration; and a Sn-concentration in the second intermediate region is higher than a Bi-concentration.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: December 2, 2014
    Assignee: Fujitsu Limited
    Inventors: Kozo Shimizu, Seiki Sakuyama, Toshiya Akamatsu
  • Patent number: 8901642
    Abstract: A semiconductor device includes a semiconductor body having a first surface defining a vertical direction and a source metallization arranged on the first surface. In a vertical cross-section the semiconductor body further includes: a drift region of a first conductivity type; at least two compensation regions of a second conductivity type each of which forms a pn-junction with the drift region and is in low resistive electric connection with the source metallization; a drain region of the first conductivity type having a maximum doping concentration higher than a maximum doping concentration of the drift region, and a third semiconductor layer of the first conductivity type arranged between the drift region and the drain region and includes at least one of a floating field plate and a floating semiconductor region of the second conductivity type forming a pn-junction with the third semiconductor layer.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: December 2, 2014
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans Weber, Franz Hirler
  • Patent number: 8894201
    Abstract: This invention discloses methods and apparatus to form organic semiconductor transistors upon three-dimensionally formed insert devices. In some embodiments, the present invention includes incorporating the three-dimensional surfaces with organic semiconductor-based thin film transistors, electrical interconnects, and energization elements into an insert for incorporation into ophthalmic lenses. In some embodiments, the formed insert may be directly used as an ophthalmic device or incorporated into an ophthalmic device.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 25, 2014
    Assignee: Johnson & Johnson Vision Care, Inc.
    Inventors: Randall B. Pugh, Frederick A. Flitsch
  • Patent number: 8889484
    Abstract: A component package and a method of forming are provided. A first component package may include a first semiconductor device having a pair of interposers attached thereto on opposing sides of the first semiconductor device. Each interposer may include conductive traces formed therein to provide electrical coupling to conductive features formed on the surfaces of the respective interposers. A plurality of through vias may provide for electrically connecting the interposers to one another. A first interposer may provide for electrical connections to a printed circuit board or subsequent semiconductor device. A second interposer may provide for electrical connections to a second semiconductor device and a second component package. The first and second component packages may be combined to form a Package-on-Package (“PoP”) structure.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: November 18, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hua Chen, Chen-Shien Chen, Ching-Wen Hsiao, Ming Hung Tseng
  • Patent number: 8889495
    Abstract: Semiconductor alloy fin structures can be formed by recessing a semiconductor material layer including a first semiconductor material to form a trench, and epitaxially depositing a semiconductor alloy material of the first semiconductor material and a second semiconductor material within the trench. The semiconductor alloy material is epitaxially aligned to the first semiconductor material in the semiconductor material layer. First semiconductor fins including the first semiconductor material and second semiconductor fins including the semiconductor alloy material can be simultaneously formed. In one embodiment, the first and second semiconductor fins can be formed on an insulator layer, which prevents diffusion of the second semiconductor material to the first semiconductor fins. In another embodiment, shallow trench isolation structures and reverse biased wells can be employed to provide electrical insulation among neighboring semiconductor fins.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: November 18, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Thomas N. Adam, Ali Khakifirooz, Alexander Reznicek
  • Patent number: 8889435
    Abstract: A first embodiment is a method for semiconductor processing. The method comprises forming a component on a wafer in a chamber; determining a non-uniformity of the plasma in the chamber, the determining being based at least in part on the component on the wafer; and providing a material on a surface of the chamber corresponding to the non-uniformity. The forming the component includes using a plasma. The material can have various shapes, compositions, thicknesses, and/or placements on the surface of the chamber. Other embodiments include a chamber having a material on a surface to control a plasma uniformity.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: November 18, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wen-Sheng Wu, Fei-Fan Chen, Chia-I Shen, Hua-Sheng Chiu
  • Patent number: 8884394
    Abstract: A signal charge collecting region is disposed inside a charge generating region so as to be surrounded by the charge generating region, and collects signal charges from the charge generating region. An unnecessary charge collecting region is disposed outside the charge generating region so as to surround the charge generating region, and collects unnecessary charges from the charge generating region. A transfer electrode is disposed between the signal charge collecting region and the charge generating region, and causes the signal charges from the charge generating region to flow into the signal charge collecting region in response to an input signal. An unnecessary charge collecting gate electrode is disposed between the unnecessary charge collecting region and the charge generating region, and causes the unnecessary charges from the charge generating region to flow into the unnecessary charge collecting region in response to an input signal.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: November 11, 2014
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Mitsuhito Mase, Takashi Suzuki, Jun Hiramitsu
  • Patent number: 8883603
    Abstract: A method for forming a silver structure for a non-volatile memory device includes providing a silver layer material upon a underlying substrate, forming a diffusion barrier material overlying the silver layer material, forming a dielectric hard mask material overlying the diffusion barrier material, subjecting the dielectric hard mask material to a patterning and etching process to form a hard mask and to expose a portion of the diffusion barrier material, subjecting the portion of the diffusion barrier material to an etching process using one or more chlorine bearing species as an etchant material, wherein one or more chloride contaminant species is formed overlying at least a portion of the silver layer material, and reacting the one or more chloride contaminant species with a solution comprising an ammonia species to form a water soluble species, wherein the ammonia species is free from an oxidizing species.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: November 11, 2014
    Assignee: Crossbar, Inc.
    Inventor: Steven Patrick Maxwell
  • Patent number: 8883622
    Abstract: A method of fabricating a semiconductor memory device includes preparing a semiconductor substrate which is divided into a cell array region and a core and peripheral region adjacent to the cell array region. Signal lines may be formed in a lower layer in a cell region. An insulation layer may be formed on the lower layer. Signal lines connected to cell region signal lines may be formed on an insulation layer of the peripheral region. A capping layer may be formed on the insulation layer and the core and peripheral signal lines. The capping layer may be etched to expose the lower layer of the cell array region and an etch stop may be formed on the lower layer and the core and peripheral region.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: November 11, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Won-mo Park, Min-wk Hwang, Hyun-chul Kim
  • Patent number: 8877532
    Abstract: A method of manufacturing an organic electroluminescence display device includes an organic compound layer which is placed between a pair of electrodes and includes at least an emission layer, the organic compound layer being two-dimensionally arranged, includes forming the organic compound layer which is insoluble in water in an entire emission region on a substrate, providing a mask layer containing a water-soluble material in at least a part of a region on the organic compound layer, removing a part of the organic compound layer which is provided in a region which is other than the region in which the mask layer is provided, removing the mask layer, and forming, after the removing of the mask layer, a layer containing at least an alkali metal or an alkaline-earth metal in a region including at least the emission region.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: November 4, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventors: Tomoyuki Hiroki, Taro Endo, Itaru Takaya, Koichi Ishige, Nobuhiko Sato
  • Patent number: 8878305
    Abstract: An integrated power module having a dielectric substrate, a source conductor trace formed on the dielectric substrate, a drain conductor trace formed on the dielectric substrate, a gate conductor trace formed on the dielectric substrate, a transistor chip having a top surface and a bottom surface connected to the drain conductor trace, a back-contact resistor having a flat planar structure with a top surface and a bottom surface connected to the gate conductor trace, and a first wire bond connecting the top surface of the transistor chip to the top surface of the back-contact resistor.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: November 4, 2014
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventors: Yuanbo Guo, Sang Won Yoon
  • Patent number: 8878215
    Abstract: Disclosed is a light emitting device module. The light emitting device module includes a first lead frame and a second lead frame electrically separated from each other, a light emitting device electrically connected to the first lead frame and the second lead frame, the light emitting device includes a light emitting structure having a first conduction type semiconductor layer, an active layer, and a second conduction type semiconductor layer, a dam disposed at the peripheral area of the light emitting device, a resin layer surrounding the light emitting device and disposed at the inner area of the dam, and a reflective member disposed at the peripheral area of the dam and including an inclined plane formed on at least one side surface thereof.
    Type: Grant
    Filed: March 6, 2012
    Date of Patent: November 4, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventors: Jun Seok Park, Ho Jin Lee
  • Patent number: 8871602
    Abstract: According to one embodiment, a method for manufacturing a molecular memory device includes: forming a first wiring layer including a plurality of first wirings extending in a first direction; forming a sacrificial film on the first wiring layer; forming a plurality of core members on the first wiring layer, the core member extending in a second direction crossing the first direction and being formed from an insulating material different from the sacrificial film; forming a second wiring on a side surface of the core member; removing a portion of the sacrificial film located immediately below the second wiring; embedding a polymer; and embedding an insulating. The embedding a polymer includes embedding a polymer serving as a memory material between the first wiring and the second wiring. The embedding an insulating member includes embedding an insulating member in a space between the second wirings between the core members.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: October 28, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroki Yamashita
  • Patent number: 8871596
    Abstract: A method of forming different structures of a semiconductor device using a single mask and a hybrid photoresist. The method includes: applying a first photoresist layer on a semiconductor substrate; patterning the first photoresist layer using a photomask to form a first patterned photoresist layer; using the first patterned photoresist layer to form a first structure of a semiconductor device; removing the first patterned photoresist layer; applying a second photoresist layer on the semiconductor substrate; patterning the second photoresist layer using the photomask to form a second patterned photoresist layer; using the second patterned photoresist layer to form a second structure of a semiconductor device; removing the second patterned photoresist layer; and wherein either the first or the second photoresist layer is a hybrid photoresist layer comprising a hybrid photoresist.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: October 28, 2014
    Assignee: International Business Machines Corporation
    Inventors: Kuang-Jung Chen, Kangguo Cheng, Bruce B. Doris, Steven J. Holmes, Sen Liu
  • Patent number: 8872222
    Abstract: A semiconductor structure and a method for forming the same are provided. The semiconductor structure comprises a first doped region, a second doped region, a doped strip and a top doped region. The first doped region has a first type conductivity. The second doped region is formed in the first doped region and has a second type conductivity opposite to the first type conductivity. The doped strip is formed in the first doped region and has the second type conductivity. The top doped region is formed in the doped strip and has the first type conductivity. The top doped region has a first sidewall and a second sidewall opposite to the first sidewall. The doped strip is extended beyond the first sidewall or the second sidewall.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: October 28, 2014
    Assignee: Macronix International Co., Ltd.
    Inventors: Ching-Lin Chan, Chen-Yuan Lin, Cheng-Chi Lin, Shih-Chin Lien
  • Patent number: 8871654
    Abstract: A film deposition apparatus forming a thin film by after repeating cycles of sequentially supplying gases to a substrate on a turntable inside a vacuum chamber that includes a first supplying portion for causing the substrate to absorb a first gas containing silicon; a second supplying portion apart from the first supplying portion for supplying a second gas containing active species to produce a silicone dioxide; a separating area between the first and second supplying portions for preventing their mixture; a main heating mechanism for heating the substrate; and an auxiliary mechanism including a heat lamp above the turntable and having a wavelength range absorbable by the substrate to directly heat to be a processing temperature at which an ozone gas is thermally decomposed, wherein a maximum temperature is lower than the thermally decomposed temperature, at which, the first gas is absorbed and oxidized by the second gas.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: October 28, 2014
    Assignee: Tokyo Electron Limited
    Inventors: Hitoshi Kato, Shigehiro Miura