Patents Examined by Dominic E Hawkins
  • Patent number: 11959943
    Abstract: A magnetic field detection apparatus includes a magnetoresistive effect element and a conductor. The magnetoresistive effect element includes a magnetoresistive effect film extending in a first axis direction and including a first end part, a second end part, and an intermediate part between the first and second end parts. The conductor includes a first part and a second part that each extend in a second axis direction inclined with respect to the first axis direction. The conductor is configured to be supplied with a current and thereby configured to generate an induction magnetic field to be applied to the magnetoresistive effect film in a third axis direction orthogonal to the second axis direction. The first part and the second part respectively overlap the first end part and the second end part in a fourth axis direction orthogonal to both of the second axis direction and the third axis direction.
    Type: Grant
    Filed: May 26, 2022
    Date of Patent: April 16, 2024
    Assignee: TDK CORPORATION
    Inventors: Norikazu Ota, Kenzo Makino, Hiraku Hirabayashi
  • Patent number: 11959951
    Abstract: A method determines an insulation resistance of the high-voltage network in an electric or hybrid vehicle, in which a controllable continuous voltage source connected to the body and to a single first terminal of a high-voltage battery of the vehicle is provided, a first resistor being connected in series to the source between the single first terminal and the body and a second resistor being connected in series between the first resistor and the source, consecutive voltage setpoint values are applied between the body and the single first terminal, a measurement signal of the voltage at the terminals of the second resistor is acquired for each setpoint value, adaptive filtering of the signal is carried out and an estimate made, in a recursive manner, of a vector of the filter transfer function coefficients, providing an update of the filtering coefficients, the insulation resistance being determined based on the estimate.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: April 16, 2024
    Assignee: RENAULT s.a.s.
    Inventors: Houssem Halalchi, Nicolas Vaflard, Pierre-Mikael Viollin
  • Patent number: 11959944
    Abstract: A current sensor includes an electrical-conduction member, a magnetoelectric converter and a shield. The shield includes a first shield and a second shield arranged such that surfaces are opposed to and spaced away from each other. A part of the electrical-conduction member and the magnetoelectric converter are located between the surface of the first shield and the surface of the second shield. The part of the electrical-conduction member located between the first shield and the second shield extends in an extension direction along the surface of the second shield. The second shield has two sides aligned in a lateral direction perpendicular to the extension direction, and has a plurality of extending parts extending toward the first shield at the sides and being aligned with and separated from each other in the extension direction. The magnetoelectric converter is located between the plurality of extending parts.
    Type: Grant
    Filed: June 22, 2022
    Date of Patent: April 16, 2024
    Assignee: DENSO CORPORATION
    Inventors: Takuma Esaka, Ryosuke Sakai, Hiroaki Miwa
  • Patent number: 11959966
    Abstract: A method for estimating the state of an electrical switching apparatus, the switching apparatus including separable electrical contacts configured to be coupled to an electrical conductor, and an electromagnetic actuator, controlled by a control circuit and including a movable core, coupled to the separable contacts, and a coil, which is passed through by a coil current. The method: includes measuring, by means of sensors associated with the coil, values of the coil current in a time interval, while the electromagnetic actuator is kept in a stable and in particular closed position, and computing, by means of an electronic control device of the switching apparatus, one or more values of a magnetic flux of the coil from the measured coil-current values, and using coil-voltage and coil-resistance values known beforehand.
    Type: Grant
    Filed: February 2, 2022
    Date of Patent: April 16, 2024
    Assignee: Schneider Electric Industries SAS
    Inventors: Rémy Orban, Vincent Geffroy
  • Patent number: 11953528
    Abstract: A diagnosis system is configured to diagnose an apparatus including a driver device. The system includes an acquisition unit configured to acquire waveform data indicating a waveform related to a current to be supplied to the driver device, and a determination unit configured to determine a condition of the apparatus. The determination unit is configured to obtain, based on the waveform data, a change caused by a component of a force in a particular direction applied to the driver device, and to determine the condition of the apparatus based on the obtained change. The diagnosis device determines the condition of the apparatus accurately.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: April 9, 2024
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Kazutaka Ikeda, Kenta Kamizono, Hiroto Nakano
  • Patent number: 11953526
    Abstract: A current sensor includes a wiring board, a shield, an insulating sensor housing, and a shield adhesive. The wiring board and the shield are accommodated in the sensor housing. The sensor housing has a shield support part to support the shield, and a shield adhesion part. An application surface of the shield adhesion part is further from the shield than a contact surface of the shield support part. The shield is mounted on the contact surface of the shield support part, and the shield adhesive is disposed between the application surface of the shield adhesion part and the shield. The shield and the wiring board are aligned with and spaced from each other in the sensor housing.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: April 9, 2024
    Assignee: DENSO CORPORATION
    Inventors: Akito Sasaki, Ryosuke Sakai, Hiroaki Miwa, Takeshi Tsukamoto, Hiroshi Nomura, Takuma Esaka, Tatsuaki Sugito
  • Patent number: 11940470
    Abstract: A substrate, comprising one or more first conductive layers, one or more second conductive layers, and a dielectric material that is arranged to encapsulate, at least in part, the first conductive layers and the second conductive layers. The one or more second conductive layers are electrically coupled to the first conductive layers. The first conductive layers and the second conductive layers are arranged to form a conductor. The first conductive layers are arranged to define a first rift in the conductor.
    Type: Grant
    Filed: May 31, 2022
    Date of Patent: March 26, 2024
    Assignee: Allegro MicroSystems, LLC
    Inventors: Loïc André Messier, Simon E. Rock, Yannick Vuillermet
  • Patent number: 11933863
    Abstract: The application provides a method for measuring a shortest distance between capacitances and a method for evaluating a capacitance manufacture procedure. The method for measuring the shortest distance between the capacitances includes: obtaining a distance between tangent lines of adjacent surfaces of two adjacent capacitances, and taking the distance between the tangent lines of the adjacent surfaces of the two adjacent capacitances as the shortest distance between two capacitances. The tangent lines of the adjacent surfaces of the two adjacent capacitances have a same direction, and the direction of the tangent lines is perpendicular to a preset arrangement direction of the capacitances.
    Type: Grant
    Filed: August 3, 2021
    Date of Patent: March 19, 2024
    Assignee: Changxin Memory Technologies, Inc.
    Inventor: Weigang Wang
  • Patent number: 11933821
    Abstract: Systems and methods for operating and calibrating electrical parameter measurement devices are provided herein. The devices may include a current sensor that includes a plurality of magnetic field sensors positioned around a measurement area that receive a current carrying conductor under test. The sensor may include a plurality of concentric rings of magnetic field sensors that provide accurate measurements that ignore magnetic fields from conductors or other components outside of the measurement area. The sensors may be used to determine the position of a conductor under test, and such information may be used to produce accurate measurements by accounting for the conductor's position. A calibration system may also be provided that is operative to generate calibration data that is subsequently used to provide more accurate measurements. The calibration data may include one or more lookup tables, coefficients for one or more mathematical formulas, or other types of data.
    Type: Grant
    Filed: September 15, 2021
    Date of Patent: March 19, 2024
    Assignee: Fluke Corporation
    Inventors: Ronald Steuer, Christian K. Schmitzer
  • Patent number: 11927608
    Abstract: The present disclosure relates to an AC/DC closed-loop current sensor, including a magnetism gathering iron core, a TMR chip, a signal processing circuit, a signal generator, and a feedback coil. The TMR chip is arranged at an air gap of the magnetism gathering iron core and connected to the signal processing circuit. The signal processing circuit is connected to the signal generator. The feedback coil is wound around the magnetism gathering iron core and connected to the signal generator. The signal processing circuit is configured to select from the induced signal of the TMR chip and make an amplification to obtain a current signal component and send the current signal component to the signal generator. The signal generator is configured to adjust a current output to the feedback coil based on the current signal component, and output a measurement result of the selected current signal component.
    Type: Grant
    Filed: September 18, 2023
    Date of Patent: March 12, 2024
    Assignee: DIGITAL GRID RES. INST., CHINA SOUTHERN PWR. GRID
    Inventors: Peng Li, Qiancheng Lv, Bing Tian, Xiaopeng Fan, Zhong Liu, Zhiming Wang, Renze Chen, Jie Wei, Xu Yin, Zejie Tan, Zhenheng Xu, Senjing Yao, Licheng Li, Yuehuan Lin, Shengrong Liu, Bofeng Luo, Jiaming Zhang
  • Patent number: 11924971
    Abstract: The disclosure relates to a printed circuit board arrangement with a printed circuit board with at least two current conducting layers. The current conducting layers extend in an axial direction of the printed circuit board and are arranged in succession in a thickness direction of the printed circuit board. The printed circuit board arrangement has a busbar which is arranged on a lateral surface of the printed circuit board and is in contact with at least one part of the current conducting layers of the printed circuit board.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: March 5, 2024
    Assignee: ZF Friedrichshafen AG
    Inventor: Thomas Maier
  • Patent number: 11923451
    Abstract: A semiconductor device includes an output-stage element and a detection element, each of the output-stage element and the detection element including: a channel-formation region deposited at an upper part of a drift region; a main electrode region deposited at an upper part of the channel-formation region; and a gate electrode buried via a gate insulating film in one or more first trenches in contact with the main electrode region, the channel-formation region, and the drift region, wherein the first trenches used in common with the detection element and the output-stage element extend in a planar pattern, and a plurality of second trenches extending in parallel to each other in a direction perpendicular to the first trenches interpose the detection element so as to separate the channel-formation region of the output-stage element and the channel-formation region of the detection element from each other.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: March 5, 2024
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Yoshiaki Toyoda
  • Patent number: 11913992
    Abstract: A machine tool includes a first motor that receives load fluctuation when the workpiece is processed and a second motor that operates to change the plural kinds of tools. An information processing device takes out the current of the first motor measured by the first current sensor for each signal that occurs at the changing operation of the plural kinds of tools and is measured by the second current sensor, and relatively compares a non-negative function value that has a current value at each taken-out segment as a parameter for each number of times of processing on the workpiece, thereby detecting a tool abnormality for each kind of the tool.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: February 27, 2024
    Assignee: MAZIN Inc.
    Inventors: Takanori Kadoya, Yusuke Uchiyama
  • Patent number: 11912331
    Abstract: A capacitance sensor (1) is provided with two electrode layers (10, 11) and an insulating layer (12) disposed between the electrode layers (10, 11). At least one of the two electrode layers (10, 11) is constituted by a reticulated soft electrode (50) that is formed from a conductive polymer and has a reticulated shape. The conductive polymer comprises a polymer and a conductive material dispersed in the polymer and has an elastic modulus of 1000 MPa or less. This method for manufacturing the capacitance sensor (1) in which the two electrode layers (10, 11) are constituted by the reticulated soft electrode (50) comprises: an electrode manufacturing step in which the reticulated soft electrode (50) is manufactured; and a laminating step in which the reticulated soft electrode (50) is laminated onto the front and back surfaces of the insulating layer (12).
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: February 27, 2024
    Assignee: Sumitomo Riko Company Limited
    Inventors: Masayoshi Nakano, Tsubasa Shinozuka, Hiroaki Ito, Shigeaki Takamatsu
  • Patent number: 11913783
    Abstract: An improved geometry sensor for an inline inspection tool used for determining defects in a pipe or other conduit. The sensor having an arm pivotally mounted to a base on a body of an inline inspection tool and a spring biasing the arm away from the body of the inline inspection tool. A magnet mounted to the arm, the magnet having a magnetic field. A Hall effect sensor fixed relative to the body of the of the inline inspection. The outer end of the arm moves along an interior surface of a conduit as the tool passes through a pipe with the arm and magnet pivoting relative to the body and the Hall effect sensor detecting movement and deflection of the arm by measuring changes in the magnetic field.
    Type: Grant
    Filed: September 29, 2021
    Date of Patent: February 27, 2024
    Assignee: Cypress In-Line Inspection, LLC
    Inventors: Blake Kay Burton, Arthur K. Fox
  • Patent number: 11898932
    Abstract: A device for diagnosing a fault in a bearing of a motor is provided. If the device operates in a fault diagnosis mode, a current signal acquisition unit acquires a real-time current signal of the motor, a residual signal acquisition unit extracts harmonic signals from the real-time current signal of the motor acquired by the current signal acquisition unit and remove a fundamental signal and a harmonic signal from the real-time current signal of the motor to acquire a residual signal, a fault feature extraction unit analyzes the residual signal in both time domain and frequency domain to extract a fault feature index of the bearing, and a fault diagnosis model unit performs, by using a bearing fault diagnosis model obtained through training, pattern recognition on the fault feature index to diagnose a fault state of the bearing.
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: February 13, 2024
    Assignee: ZHUZHOU CRRC TIMES ELECTRIC CO., LTD.
    Inventors: Wenlong Zhu, Yong Liu, Jisheng Dai, Zongshuai Li, Jiawei Yang, Ping Jiang, Yanhao Zhan, Zhongjing Zhang, Hailong Xu
  • Patent number: 11892475
    Abstract: Current sensor comprising: one pair, of identical electrical coils with superparamagnetic cores and surrounded by a common shielding braid; a direct current excitation means configured to make a direct current flow in at least one of the coils of the pair of coils and a means of adjusting an intensity of the direct current; a first alternating current excitation means configured to make an alternating current flow at a first frequency in the coils of the pair that the direct current flows through; a second alternating current excitation means configured to make an alternating current flow at a second frequency greater than the first frequency in the two coils of the pair of coils; a means of measuring an electromotive force of the Noel Effect® type at the terminals of the two coils of the pair.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: February 6, 2024
    Assignee: SAFRAN ELECTRICAL & POWER
    Inventor: Lionel Cima
  • Patent number: 11892476
    Abstract: Current sensor packages are described including a leadframe configured to carry a current to be sensed and a current sensor that is electrically isolated from the leadframe. The current sensor is disposed adjacent to a first portion of the leadframe that includes a plurality of notches. An encapsulating material is configured to encapsulate the current sensor and at least a part of the first portion of the leadframe that is adjacent to the current sensor and includes the plurality of notches. The current sensor includes a substrate, a first magnetic field sensing element that is formed on the substrate, and a second magnetic field sensing element that is formed on the substrate. The first magnetic field sensing element and the second magnetic field sensing element are disposed on opposite sides of a central axis of the first portion of the leadframe.
    Type: Grant
    Filed: February 15, 2022
    Date of Patent: February 6, 2024
    Assignee: Allegro MicroSystems, LLC
    Inventors: Simon E. Rock, Thomas Kerdraon, Yannick Vuillermet, Loïc André Messier, Andreas P. Friedrich
  • Patent number: 11892478
    Abstract: A magnetic sensor device includes a first detection circuit that generates a first detection signal, a coil through which a feedback current is passed to generate a cancellation magnetic field, a second detection circuit that generates a second detection signal having a correspondence with a value of the feedback current, and a control circuit that controls the feedback current. In a closed-loop operation, the control circuit controls the feedback current so that the first detection signal has a constant value. In an open-loop operation, the control circuit maintains the feedback current at a constant value.
    Type: Grant
    Filed: February 17, 2023
    Date of Patent: February 6, 2024
    Assignee: TDK CORPORATION
    Inventors: Yuta Saito, Hiraku Hirabayashi
  • Patent number: 11885835
    Abstract: A magnetic field detection apparatus includes a magnetoresistive effect element and a coil. The coil includes first and second tier parts opposed to each other in a first axis direction, with the magnetoresistive dal element interposed therebetween. The coil is configured to be supplied with a current and thereby configured to generate an induction magnetic field to be applied to the magnetoresistive effect element in a second axis direction. The first tier part includes first conductors extending in a third axis direction, arranged in the second axis direction and coupled in parallel to each other. The second tier part includes a second conductor or second conductors extending in the third axis direction, the second conductors being arranged in the second axis direction and coupled in parallel to each other. The first conductor each have a width smaller than a width of the second conductor or each of the second conductors.
    Type: Grant
    Filed: July 18, 2022
    Date of Patent: January 30, 2024
    Assignee: TDK CORPORATION
    Inventors: Takafumi Kobayashi, Norikazu Ota, Kenzo Makino