Patents Examined by Dwan A Gerido
  • Patent number: 11511278
    Abstract: A solid reagent containment unit is formed by a support; a frame body fixed to the support and delimiting internally, together with the support, an analysis volume; a reagent-adhesion structure within the analysis volume; and at least one reagent cavity, which extends within the reagent-adhesion structure. The reagent-adhesion structure is of an adhesion material embossable at temperatures lower by 6-8° C. than its own melting point and has a melting point such as not to interfere with the analysis. The reagent cavity forms a retention wall, laterally surrounding the reagent cavity, and houses dried reagents. The adhesion material is chosen among wax, such as paraffin, a polymer, such as polycaprolactone, a solid fat, such as cocoa butter, and a gel, such as hydrogel or organogel.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: November 29, 2022
    Assignee: STMICROELECTRONICS S.r.l.
    Inventors: Marco Cereda, Lillo Raia, Alessandro Paolo Bramanti
  • Patent number: 11493502
    Abstract: Disclosed are methods, materials and devices for approximation of blood volume in a fluid, such as in a biological fluid collected during a surgical procedure. The method and devices include the use of a RBC flocculant, such as polyDADMAC, and an approximate blood hematocrit for the type of animal, as well as a calculated RBC packing ratio corresponding to the collection device being used. Also provided is a Blood Indicator Panel (BIP), comprising a series of markings calculated from an observed red blood settlement volume, the average animal type hematocrit, and a calculated RBC packing ratio “?” value for the collection device. Pediatric (about 200 ml or 250 ml size container), adult human (about 1,000 ml-1,500 ml) and veterinary (about 500 ml-2,500 ml) collection containers are also disclosed, that include a RBC flocculant, for use in approximating blood volume in a fluid.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: November 8, 2022
    Assignee: CYPHER MEDICAL, LLC
    Inventors: Christopher A. Carew, Jian Ling, Harold T. Duperier, III
  • Patent number: 11493501
    Abstract: Disclosed are methods, materials and devices for approximation of blood volume in a fluid, such as in a biological fluid collected during a surgical procedure. The method and devices include the use of a RBC flocculant, such as polyDADMAC, and an approximate blood hematocrit for the type of animal, as well as a calculated RBC packing ratio corresponding to the collection device being used. Also provided is a Blood Indicator Panel (BIP), comprising a series of markings calculated from an observed red blood settlement volume, the average animal type hematocrit, and a calculated RBC packing ratio “?” value for the collection device. Pediatric (about 200 ml or 250 ml size container), adult human (about 1,000 ml-1,500 ml) and veterinary (about 500 ml-2,500 ml) collection containers are also disclosed, that include a RBC flocculant, for use in approximating blood volume in a fluid.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: November 8, 2022
    Assignee: CYPHER MEDICAL, LLC
    Inventors: Christopher A. Carew, Jian Ling
  • Patent number: 11486798
    Abstract: Disclosed are a water quality analyzer and a method for analyzing water quality. The water quality analyzer includes a first disc system, a second disc system, a colorimetric system, a cleaning system, a mechanical sampling system, an analysis system and a central control display. The first disc system and the second disc system are axially rotatable. A plurality of sample locating positions and a chemical locating positions are provided on the first disc system along a circumference of the first disc system. A plurality of colorimetric cuvette locating positions are provided on the second disc system, and the colorimetric system is arranged at a circumference edge of the second disc system. The cleaning system and the mechanical sampling system are provided between the first disc system and the second disc system. The method includes water sampling, water sample injection, cleaning, reagent extraction, reagent injection, cleaning and colorimetric analysis.
    Type: Grant
    Filed: September 18, 2019
    Date of Patent: November 1, 2022
    Assignee: FUJIAN KELUNGDE ENV. TECH. CO., LTD
    Inventors: Shuiji Wang, Jianping Cui
  • Patent number: 11485965
    Abstract: A data storage medium is disclosed comprising a two-dimensional (2D) support structure onto which artificially synthesized DNA molecules encoding digital information are placed and then covered with a protective layer. The 2D support structure is formed from a material such as metal foil, glass, or plastic. The 2D support structure may be functionalized with positively charged molecules to improve DNA adhesion. The DNA is protected from degradation by encapsulation in a protective layer of a non-reactive material such as silica or a thin layer of metal. A process for storing DNA on 2D support structures is also disclosed. Correlation of specific DNA molecules with a physical storage location on a 2D support structure provides geometric addressability for selective access to specific digital information.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: November 1, 2022
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Karin Strauss, Bichlien Hoang Nguyen, Robert N. Grass, Alexander Xavier Christof Kohll, Weida Chen
  • Patent number: 11480527
    Abstract: Described are chromogenic sensors, methods of use, and kits including sensors. The sensors can have a polymer structure with a waveform cross-section in a programmed state. Upon exposure to a first liquid, the polymer structure in the programmed state changes to polymer structure in an activated state. Methods for measuring the presence of a liquid using the sensor are described, as are kits including the sensors.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: October 25, 2022
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Peng Jiang, Zhuxiao Gu, Sin-Yen Leo
  • Patent number: 11460463
    Abstract: A method and apparatus for calculating the derived cetane number of a liquid hydrocarbon sample is disclosed. The method comprises combusting (19) the sample in a constant volume combustion chamber (45). The method comprises obtaining (23) a pressure versus time combustion profile (69) of the sample wherein the profile comprises a first region (81) and a second region (83), the first region (81) including the start of combustion, and the second region (83) relating to a later time than the first region. The method comprises selecting a single data point from the second region (83) of the combustion profile (69), said data point representing a combustion delay (CD) of the combustion profile; and calculating a derived cetane number for the sample using the time value associated with said single data point.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: October 4, 2022
    Inventors: Kevin Fogarty, David Thompson, Noel Beauchamp
  • Patent number: 11439310
    Abstract: Disclosed are methods, materials and devices for approximation of blood volume in a fluid, such as in a biological fluid collected during a surgical procedure. The method and devices include the use of a RBC flocculant, such as polyDADMAC, and an approximate blood hematocrit for the type of animal, as well as a calculated RBC packing ratio corresponding to the collection device being used. Also provided is a Blood Indicator Panel (BIP), comprising a series of markings calculated from an observed red blood settlement volume, the average animal type hematocrit, and a calculated RBC packing ratio “?” value for the collection device. Pediatric (about 200 ml or 250 ml size container), adult human (about 1,000 ml-1,500 ml) and veterinary (about 500 ml-2,500 ml) collection containers are also disclosed, that include a RBC flocculant, for use in approximating blood volume in a fluid. Methods of detecting blood in a sample, such as a fluid sample, and kits for performing the methods, are also provided.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: September 13, 2022
    Assignee: Cypher Medical, LLC
    Inventors: Christopher A. Carew, Jian Ling
  • Patent number: 11427532
    Abstract: Disclosed is a fluorescent compound for the detection of isocyanate substances, a preparation method therefor and use thereof as a test-paper-type detection probe. The fluorescent compound is 2,4-di(((4?-(diphenylamino)-[1,1?-biphenyl]-4-yl)imino)methyl)phenol. The fluorescent compound is prepared by means of a one-step method. The fluorescent compound has simple and convenient preparation with high yield, and is capable of making a rapid and specific response to isocyanate substances. Moreover, the fluorescence intensity of the fluorescent compound will enhance with the increase of the isocyanate concentration. The fluorescent compound can be made into a portable test-paper-type probe for the detection of isocyanate substances in air, and can achieve the visual detection of volatile isocyanate gases. The probe has an aggregation-induced emission effect, and thus it has higher fluorescence quantum yield when using a test-paper-type probe for detection.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: August 30, 2022
    Assignee: SOUTH CHINA UNIVERSITY OF TECHNOLOGY
    Inventors: Shuizhu Wu, Lingfeng Xu, Fang Zeng
  • Patent number: 11415582
    Abstract: Method for detecting colon or colorectal cancer by measuring heavy metal concentrations in colon or colorectal tissue using laser-induced breakdown spectroscopy (LIBS).
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: August 16, 2022
    Assignees: King Fahd University of Petroleum and Minerals, Imam Abdulrahman Bin Faisal University
    Inventors: Muhammad Ashraf Gondal, Munirah A. Almessiere, Bilal A. Gondal
  • Patent number: 11408867
    Abstract: An embodiment provides a method for measuring sulfate in an aqueous sample, including: introducing an aqueous sample containing an amount of sulfate to a barium dye complex, thereby creating a solution; adding a clarifying agent to the solution, thereby causing the solution to be clarified; and measuring the amount of sulfate in the aqueous sample by measuring a change in color of the solution, the change in color caused by the barium dye complex mixing with the sulfate. Other aspects are described and claimed.
    Type: Grant
    Filed: August 1, 2019
    Date of Patent: August 9, 2022
    Assignee: HACH COMPANY
    Inventor: Daniel Gustav Mieritz
  • Patent number: 11391715
    Abstract: Coating compositions are described that include one or more rare metal components, such as rare alkali metal components, as well as diagnostics test elements that incorporate the same. Methods also are described for determining an amount of a dried coating composition in a coat based upon the rare metal components.
    Type: Grant
    Filed: March 29, 2019
    Date of Patent: July 19, 2022
    Assignee: Roche Diabetes Care, Inc.
    Inventors: Wolfgang Schick, Alexander Ibach, Yilmaz Isgoeren, Kai Kuellmer
  • Patent number: 11385183
    Abstract: Cu(II) detection in the presence of main group heavy metal ions and d-, f- and g-element interferents relies on a colorimetric chelating complex between 3-hydroxy-5-nitrobenzaldehyde-4-hydroxybenzoylhydrazone (3-HNHBH) and Cu(II). Derivatives and entrapped forms of the probe were aligned with the methods of analysis, featuring spectrophotometric, reflectometric, lateral flow, microfluidic, lab-on-paper, positional array, dynamic array, flow cytometry and tandem stage devices. A remotely operating software capable of DFT calculations predicted the observed detection limit of 0.34 ?g L?1 (<5 nM) as well as high selectivity towards copper ions in the presence of competing Zn+2 and Ni+2. The probe was readily regenerated against metal complexation by using a 0.5 M HCl solution, indicating its feasibility to be a re-usable sensor for the convenient detection of copper ions in water-organic media.
    Type: Grant
    Filed: October 9, 2019
    Date of Patent: July 12, 2022
    Assignee: King Fahd University of Petroleum and Minerals
    Inventors: Chanbasha Basheer, Abdulaziz A. Al-Saadi, Ismail Abdulazeez
  • Patent number: 11378566
    Abstract: The invention relates to a method for determining ammonium or ammonia in aqueous samples in accordance with the known Berthelot method, wherein the risk of incorrectly low results is greatly reduced by additionally measuring the extinction in the absorption range of the nitroprusside used as a catalyst.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: July 5, 2022
    Assignee: MERCK PATENT GMBH
    Inventor: Ralf Olt
  • Patent number: 11372011
    Abstract: Disclosed are high-throughput vessel receiving systems and methods of receiving sample vessels, such as samples stored in test tubes. A system for receiving a plurality of individual vessels that each contains a sample, and systems and apparatus for guiding, reorienting, collecting, and transporting a plurality of articles, including vessels, are disclosed.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: June 28, 2022
    Assignee: Laboratory Corporation of America Holdings
    Inventors: David Wilson, Jay Krajewski, Kevin Meyer
  • Patent number: 11366077
    Abstract: A device for detecting airborne contaminants includes a protonated, electrically conductive sensing material with affinity for binding with, and capable of being deprotonated by, the airborne contaminant. Electronics measure a property of the sensing material that is sensitive to deprotonation and generates signals indicative of the airborne contaminant. A method for detecting airborne contaminants includes: determining a property change of the protonated, electrically conductive material; and determining presence of the airborne contaminant based on the change.
    Type: Grant
    Filed: June 13, 2013
    Date of Patent: June 21, 2022
    Assignee: THE TRUSTEES OF DARTMOUTH COLLEGE
    Inventors: Joseph J. Belbruno, Susanne E. Tanski
  • Patent number: 11351536
    Abstract: A biochemical analysis system capable of sample preparation and processing can include at least one inlet channel having a non-fouling, slippery surface to autonomously transport a fluid sample to a chamber by a geometry of the at least one inlet channel. The at least one inlet channel can include a first end, which is open and exposed, and a second end connected to the chamber for mixing and reaction of the fluid sample, and the at least one inlet channel can include a converging or diverging angle.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: June 7, 2022
    Assignee: The Penn State Research Foundation
    Inventors: Pak Kin Wong, Tak-Sing Wong, Jing Wang, Hui Li, Yi Lu, Ying Wan
  • Patent number: 11353379
    Abstract: A sampling apparatus (100) employs a cell-positioning system to move a sample capture cell (138) relative to a specimen positioning system (124). The cell-positioning system may be controlled to move sample capture cell (138) opposite to movement of the specimen positioning system (124) to maintain alignment of the sample capture cell (138) with an optical path of a laser beam of a sample generator (108). Alternatively or additionally, the cell-positioning system may be controlled to move sample capture cell (138) in response to alignment deviation of a reference beam on a quadrant detector (404).
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: June 7, 2022
    Assignee: Elemental Scientific Lasers, Inc.
    Inventors: Shane Robert Hilliard, Leif Christian Summerfield, Erik Barnholt Larsen
  • Patent number: 11340212
    Abstract: Methods of analyzing a biological fluid to determine an expected therapeutic benefit of the fluid include determining amounts of components within the biological fluid. Comparisons of a first component of the biological fluid relative to another component of the biological are made to characterize a therapeutic effect of the biological fluid.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: May 24, 2022
    Assignee: Greyledge Technologies, LLC
    Inventors: David Karli, Theodore Sand
  • Patent number: 11338285
    Abstract: A technique relates to a fluidic cell configured to hold a nanofluidic chip. A first plate is configured to hold the nanofluidic chip. A second plate is configured to fit on top of the first plate, such that the nanofluidic chip is held in place. The second plate has at least one first port and at least one second port. The second plate has an entrance hole configured to communicate with an inlet hole of the nanofluidic chip. The second port is angled above the first port, such that the first port and second port intersect to form a junction. The second port is formed to have a line-of-sight to the entrance hole, such that the second port is configured to receive input for extracting air trapped at a vicinity of the entrance hole.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: May 24, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michael A. Pereira, Joshua T. Smith, Benjamin H. Wunsch