Patents Examined by Erin F Heard
  • Patent number: 11681011
    Abstract: The description below relates to a method for a radar system that can be used to detect perturbations in the received radar signal. According to an example implementation, the method comprises providing a digital radar signal using a radar receiver, wherein the digital radar signal comprises a multiplicity of segments; calculating an envelope signal that represents the envelope of a segment of the digital radar signal; and ascertaining a time of the onset of an interference signal contained in the considered segment of the digital radar signal by using at least one statistical parameter of the envelope signal.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: June 20, 2023
    Assignee: Infineon Technologies AG
    Inventors: Paul Meissner, Mate Andras Toth
  • Patent number: 11681049
    Abstract: Provided is a technique capable of moving a mobile body to an appropriate position and eliminating the mobile body. This mobile body control system is provided with: a false signal generation unit that generates a false signal for calculating a position different from the actual position of the mobile body on the basis of signal code information which the mobile body has received to calculate the position thereof; and a false signal transmission unit that transmits the generated false signal into a prescribed region.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: June 20, 2023
    Assignee: NEC CORPORATION
    Inventor: Noriyoshi Hiroi
  • Patent number: 11681015
    Abstract: This document includes techniques, apparatuses, and systems related to a waveguide with squint alteration, which can improve electromagnetic wave operation. In aspects, squint of electromagnetic waves pertaining to waveguides may be altered and improved. In this example, the techniques also enable the waveguide to direct electromagnetic waves according to respective chambers and one or more apertures, improving the quality of signals transmitted and received. The chambers may be divided according to a divider extending toward an opening of the waveguide, directing electromagnetic waves between the opening and the one or more apertures.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: June 20, 2023
    Assignee: Aptiv Technologies Limited
    Inventors: Alireza Foroozesh, Shawn Shi
  • Patent number: 11675047
    Abstract: A frequency modulated continuous wave (FMCW) radar system includes an antenna array having C antennas where (C=A+B?1), a first integrated circuit (IC) device including A first sensor inputs, and a second IC device including B second sensor inputs. The first sensor inputs are coupled to a first A of the antennas, and the second sensor inputs are coupled to a last B of the antennas such that a common one of the first sensor inputs and a common one of the second sensor inputs are both coupled to a common antenna. Each IC device receives reflected signals on each sensor input, and mixes the reflected signals to associated baseband signals based upon a local oscillator (LO) signal. Each LO signal has a different phase shift. The LO signals are based upon a common LO signal.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: June 13, 2023
    Assignee: NXP B.V.
    Inventor: Cicero Silveira Vaucher
  • Patent number: 11675090
    Abstract: Apparatus and methods permit the use of a microelectromechanical systems (MEMS) oscillator in a satellite positioning system receiver, such as a Global Positioning System (GPS) receiver. Techniques to ameliorate jitter or phase noise disadvantages associated with MEMS oscillators are disclosed. For example, a receiver can use one or more of the following techniques: (a) use another source of information to retrieve ephemeris information, (2) perform advanced tight coupling, and/or (3) use a phase-locked loop to clean up the jitter or phase noise of the MEMS oscillator. With respect to advanced tight coupling, an advanced tight coupling processor can include nonlinear discriminators which transform I and Q data into linear residual measurements corrupted by unbiased, additive, and white noise. It also includes an amplitude estimator configured to operate in rapidly changing, high power noise; a measurement noise variance estimator; and a linear residual smoothing filter for input to the navigation filter.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: June 13, 2023
    Assignee: L3Harris Interstate Electronics Corporation
    Inventors: David Duane Chapman, Steven B. Alexander
  • Patent number: 11668834
    Abstract: A satellite orbiting in one of a plurality of orbital planes of a satellite constellation system at an altitude range corresponding to low earth orbit includes at least one processor configured to generate satellite state data, and to generate a navigation signal based on the satellite state data. The satellite includes at least one transmitter configured to transmit the navigation signal for receipt by at least one client device on earth. Each of the plurality of orbital planes includes a corresponding one of a plurality of satellite subsets of a plurality of satellites of the satellite constellation system. Each of the plurality of orbital planes is within the altitude range, and the plurality of orbital planes includes a set of inclined orbital planes at a non-polar inclination.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: June 6, 2023
    Assignee: Xona Space Systems Inc.
    Inventors: Tyler Gerald René Reid, Brian Manning
  • Patent number: 11668843
    Abstract: A low-earth orbit (LEO) satellite includes a non-atomic clock configured to generate a clock signal, a navigation signal receiving and processing module, and a navigation signal generation and transmission module. The navigation signal receiving and processing module is configured to receive the clock signal from the non-atomic clock, receive first signaling including first timing data generated based on a high precision clock, and generate clock state data based on the clock signal and the first timing data. The navigation signal generation and transmission module is configured to receive the clock signal from the non-atomic clock, generate a navigation message that indicates the clock state data, generate a broadcast carrier signal by utilizing the clock signal, generate a navigation signal based on modulating the navigation message upon the broadcast carrier signal, and broadcast the navigation signal for receipt by at least one client device.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: June 6, 2023
    Assignee: Xona Space Systems Inc.
    Inventors: Kazuma Gunning, Adrien Louis Henry Perkins
  • Patent number: 11668790
    Abstract: Aspects of the disclosure are directed to apparatuses, systems and methods for radar processing. As may be implemented in accordance with one or more aspects herein, an apparatus may include receiver circuitry to receive and sample radar signals reflected from a target, and processing circuitry to carry out the following. Representations of the reflections are transformed into the time-frequency domain where they are oversampled. The oversampled representations of the reflections are inversely transformed to provide resampled reflections. Positional characteristics of the target may then be ascertained by constructing a range response characterizing the target based on the resampled reflections.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: June 6, 2023
    Assignee: NXP B.V.
    Inventors: Ryan Haoyun Wu, Dongyin Ren, Michael Andreas Staudenmaier, Maik Brett
  • Patent number: 11662454
    Abstract: Systems and methods for operating radar systems. The methods comprise, by a processor: receiving point cloud information generated by at least one radar device and a spatial description for an object; generating a plurality of point cloud segments by grouping data points of the point cloud information based on the spatial description; arranging the point cloud segments in a temporal order to define a radar tentative track; performing dealiasing operations using the radar tentative track to generate tracker initialization information; and using the tracker initialization information to generate a track for the object.
    Type: Grant
    Filed: November 2, 2020
    Date of Patent: May 30, 2023
    Assignee: Ford Global Technologies, LLC
    Inventors: Xiufeng Song, Avinash Ajit Nargund
  • Patent number: 11662449
    Abstract: A computer assisted method for processing output from a mmWave sensor to derive a more reliable count of people in a room, zone or space being monitored by the sensor. In some examples, damping is applied to a varying “people count” signal from the sensor. The damping reduces volatility of the people count and avoids counting anomalous false positive detections. When the people count value decreases, damping may be applied more heavily to disregard intermittent false negatives where the sensor momentarily fails to detect an actual person. In some examples, the mmWave sensor provides point clouds representing the approximate shape and location of detected apparent objects, some of which may be people. Some example methods define digital targets corresponding to the point clouds. The targets are deemed to represent real people if the objects and their corresponding targets have sufficient lifespan and exhibit movement within a predetermined normal range.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: May 30, 2023
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventor: Armin Wellig
  • Patent number: 11662428
    Abstract: A radar system and method for maintaining radar performance of radar system in jammed environment are provided. The radar system has main antenna arrangement for transmitting and/or receiving electromagnetic waves. Main antenna arrangement includes at least one main antenna element and at least one main electronics module for transmitting and/or receiving signals to/from at least one main antenna element. The system has auxiliary antenna arrangement for transmitting and/or receiving electromagnetic waves, auxiliary antenna arrangement includes at least one auxiliary antenna element and at least one auxiliary electronics module for transmitting and/or receiving signals to/from the at least one auxiliary antenna element. System has a controller connected to main antenna arrangement and to auxiliary antenna arrangement. Controller is configured to transmit first radar waveform from main antenna element, and transmit second radar waveform from auxiliary antenna element.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: May 30, 2023
    Assignee: SAAB AB
    Inventor: Kent Falk
  • Patent number: 11656326
    Abstract: An object of the present invention is to provide a method capable of calibrating a sensor function required in a safety design of a radar safety sensor in real time. A calibration station (11) is provided on a traveling route of an unmanned vehicle (1) on which a safety sensor (3) for detecting an obstacle (2) ahead is mounted, and a standard reflection is provided at a position of a maximum measurement distance (L) of the safety sensor (3) at the calibration station (11). Prior to normal traveling of the unmanned trolley 1, the unmanned trolley 1 is moved to the calibration station 11 in advance, and the reference value obtained by measuring the standard reflector 12 with the safety sensor 3 is taught, During normal operation of the unmanned trolley 1, every time the unmanned trolley 1 reaches the calibration station 11, the measured value obtained by measuring the standard reflector 12 by the safety sensor 3 is compared with a reference value. Calibrate the sensor function of FIG. 1.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: May 23, 2023
    Assignee: Argo AI, LLC
    Inventors: Jonathan C. Berry, Duc H. Vu
  • Patent number: 11656321
    Abstract: A method of microwave motion detection with adaptive frequency control, for a microwave motion sensor, comprises suppressing output of the first detecting signal generated with a first frequency, determining whether a first interference signal is detected in the first frequency during the suppressing, responsive to that the first interference signal is detected in the first frequency, generating a second detecting signal with a second frequency, which is different from the first frequency, and suppressing output of the second detecting signal, determining whether a second interference signal is detected in the second frequency during the suppressing, and responsive to that the second interference signal is not detected in the second frequency, outputting the second detecting signal for motion detection. The microwave motion sensor is operated in a normal mode or in a detection mode according to the first detecting signal, a reflected signal, the second detecting signal and an interference signal.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: May 23, 2023
    Assignee: RichWave Technology Corp.
    Inventor: Tse-Peng Chen
  • Patent number: 11656320
    Abstract: Systems, methods, and apparatus for radar waveforms using orthogonal sequence sets are disclosed. In one or more examples, a vehicle for autonomous driving comprises a radar sensor. In some examples, the radar sensor comprises a waveform transmission module adapted to generate a phase-coded waveform based on a set of concatenated orthogonal sequences. Also, in some examples, the radar sensor comprises a receiver adapted to estimate a range and Doppler from a received echo from the phase-coded waveform. In one or more examples, the orthogonal sequences are Zadoff-Chu (ZC) sequences.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: May 23, 2023
    Assignee: METAWAVE Corporation
    Inventor: Jun Fang
  • Patent number: 11650326
    Abstract: A wearable training computer includes a global navigation satellite system (GNSS) antenna arrangement configured to provide a group of antenna configurations for receiving a GNSS signal, wherein each antenna configuration provides different radio frequency properties. The wearable training computer further includes a measurement circuitry configured to measure performance of the GNSS antenna and a processing circuitry configured to select, based on at least an activity type of a user of the wearable training computer, a subset of the antenna configurations from the group of the antenna configurations, and further configured to select, from the subset of the antenna configurations based on the measured GNSS antenna performance, an antenna configuration for receiving the GNSS signal.
    Type: Grant
    Filed: July 29, 2020
    Date of Patent: May 16, 2023
    Assignee: Polar Electro Oy
    Inventors: Vesna Somero, Ville Majava, Pertti Nissinen, Atte Kuosmonen, Marko Tuhkala
  • Patent number: 11650290
    Abstract: Determining a target's range profiles is an important issue for coastal surveillance radars because it can give us the knowledge about the target, for example, target's type, target's structure and its length along radial direction. Some modern radars nowaday are equipped with the feature of target's range profile extraction, but the results are not accurate due to limitations in processing algorithms. The invention “system and method of determining target's range profiles for coastal surveillance radars” solves the above problem in the direction of proposing a system of technical solutions and associated algorithm improvements.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: May 16, 2023
    Assignee: VIETTEL GROUP
    Inventors: Van Loi Nguyen, Thanh Son Le, Trung Kien Tran
  • Patent number: 11650287
    Abstract: This application relates to a jamming signal generating apparatus. In one aspect, the jamming signal generating apparatus includes a signal analyzer configured to perform measurement and analysis of a radar reception signal, and a radio frequency (RF) source signal output device configured to receive the radar reception signal and to output a video signal by reflecting the measurement and the analysis. The jamming signal generating apparatus may also include a frequency up converter configured to output a jamming signal and a jamming transmission signal measurement device configured to receive the video signal and the jamming signal and to obtain a jamming to signal ratio (JSR).
    Type: Grant
    Filed: July 22, 2021
    Date of Patent: May 16, 2023
    Assignee: AGENCY FOR DEFENSE DEVELOPMENT
    Inventors: Jeil Jo, Junghoon Lee, Hongkyun Yu, Unseob Jeong
  • Patent number: 11650286
    Abstract: A method for separating large and small targets from noise in radar IF signals, according to which a receiver receives, echo signals that are reflected from targets of different size (such as walls or ground), in response to the transmission of chirp FMCW radar signals, modulated (e.g., using Linear Frequency Modulation) in a predetermined modulation speed for a predetermined duration. The echo signals are down-converted by mixing them with the transmitted signal, to obtain received Intermediate Frequency (IF) signal, which is then sampled both in phase (I-channel) and in quadrature phase (Q-channel). The received IF signal passes a Fourier transform, to obtain power spectral components that belong to a relevant frequency domain, associated with an echo signal reflected from a real target, along with corresponding power spectral components that belong to an irrelevant, opposite frequency domain.
    Type: Grant
    Filed: January 24, 2018
    Date of Patent: May 16, 2023
    Inventor: Ronit Roxana Fuchs
  • Patent number: 11644567
    Abstract: The present disclosure discloses a distance measuring device for a vehicle. The distance measuring device for the vehicle of the present disclosure includes a fixing portion to be mounted on an outer surface of the vehicle; and a sensor portion which is installed in the fixing portion, irradiates a radio wave to the outside of the vehicle, receives the radio wave from the outside of the vehicle, measures a distance between an object of the outside of the vehicle and the vehicle, or detects the object.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: May 9, 2023
    Assignee: HYUNBO CORPORATION
    Inventors: Yu-Hwan Lee, Young-Woo Lee
  • Patent number: 11644560
    Abstract: Techniques for target tracking that include obtaining state information for a first target object, the state information including previous location information for the first target object and a previous group distribution for points associated with the first target object at a previous point in time, predicting a location for the first target object based on the obtained state information, receiving a first set of points, identifying a first distribution of points, from the first set of points based on the predicted location to associate one or more first points of the first distribution of points with the target object, determining a current group distribution for the points associated with the first target object, and outputting a current location information and a current group distribution point.
    Type: Grant
    Filed: June 24, 2020
    Date of Patent: May 9, 2023
    Assignee: Texas Instmments Incorporated
    Inventors: Michael Livshitz, Mingjian Yan