Patents Examined by Ernest G. Therkorn
  • Patent number: 8801924
    Abstract: This application discloses, in part, 1) a stationary phase column and compression designs for preparative chromatography, 2) a method of improving performance of silica gel chromatography by controlling the hydration of silica gel and acidifying the mobile phase, and 3) a method of extending the life of a silica gel column packing by cleaning or regenerating the silica gel stationary phase.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: August 12, 2014
    Assignee: IronStone Separations, Inc.
    Inventors: James D. McChesney, Douglas L. Rodenburg
  • Patent number: 8795529
    Abstract: Permeable polymeric monolithic materials are prepared in a plastic column casing. In one embodiment, the permeable polymeric monolithic materials are polymerized by the application of heat from an external source starting at a low temperature such as 40 degrees centigrade, depending on the mixture and size of the column, and continuing at a higher temperature, such as 60 degrees centigrade. The temperature at the start of the polymerization is low enough so as not to cause exothermal run-away conditions and to avoid high heat of reaction that would prevent a substantially constant temperature across the cross-section of the column. The higher temperature is used after sufficient monomer depletion has occurred and steric interference has increased so the polymerization reaction is sufficiently slow to avoid heat of reaction generation high enough to cause significant reduction in the homogeneousness of the pore sizes.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: August 5, 2014
    Assignee: Dionex Corporation
    Inventor: Shaofeng Xie
  • Patent number: 8795533
    Abstract: The current invention comprises a method for the regeneration of a cation exchange chromatography column.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: August 5, 2014
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Josef Burg, Klaus Reichert, Axel Schroth, Hartmut Schurig, Axel Wessner
  • Patent number: 8784655
    Abstract: A liquid chromatographic system is provided including catalytically combining hydrogen and oxygen gases in the chromatography eluent stream in a catalytic gas elimination chamber, to form water and thereby reduce the gas content in the eluent stream. Also, a liquid ion chromatographic system in which the effluent from the detector is recycled to a membrane suppressor and then is mixed with a source of eluent for recycle to the chromatographic column.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: July 22, 2014
    Assignee: Dionex Corporation
    Inventors: Yan Liu, Christopher A. Pohl, Nebojsa Avdalovic, John M. Riviello, Archava Siriraks
  • Patent number: 8778188
    Abstract: A chromatography column having a longitudinal axis and comprising a column wall with a first end and a second end, a first end plate assembly removably connectable to said first end of the column wall, a second end plate assembly removably connectable to said second end of the column wall, wherein said first end plate assembly, said column wall and said second end plate assembly are arranged along the longitudinal axis of the column wherein the column wall, and/or first end plate assembly and/or second end plate assembly is/are rotatable about an axis of rotation wherein said axis of rotation is parallel to the longitudinal axis of said column and positioned outside the column.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: July 15, 2014
    Assignee: GE Healthcare Bio-Sciences AB
    Inventors: Per Uselius, Mats Olsson, Sven Wounder, Jerker Persson
  • Patent number: 8771517
    Abstract: An IC system including sample preparation. The system includes a liquid sample injection loop, an ion concentrator, an ion separator, and only a single pump for pumping fluid through the system.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: July 8, 2014
    Assignee: Dionex Corporation
    Inventors: Kannan Srinivasan, Rong Lin
  • Patent number: 8764979
    Abstract: A non-particulate organic porous material with optical resolution capability, the non-particulate organic porous material having a continuous pore structure, which comprises macropores and mesopores, the macropores being interconnected forming mesopores with a radius of 0.01-100 ?m in the interconnected parts, and optically active groups uniformly introduced therein possesses high physical stability, can be used under wide separating conditions, and has a large capacity for separating optically active substances (enantiometers).
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: July 1, 2014
    Assignee: ORGANO Corporation
    Inventors: Masahiro Teraguchi, Takashi Kaneko, Toshiki Aoki, Hiroshi Inoue, Akiko Yoshida
  • Patent number: 8741134
    Abstract: In a preferred embodiment, a sample container storage part for storing a number of sample containers S, a nozzle for dropping a sample component separated and supplied by an LC and an additive liquid such as digestive fluid supplied from another liquid supplying part to the sample container S, a carrying mechanism for carrying and positioning the sample container at an arbitrary position under the nozzle, and a second nozzle, serving as a suction/injection mechanism, for sucking in the fractionated/collected sample component and injecting the sample component to another LC. The carrying mechanism provides a rotation mechanism. The carrying mechanism rotates over 180 degrees and carries the sample container S completed with fractionating/collecting to the position of the second nozzle, and the sample is sucked in by the second nozzle and injected to the LC of next stage.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: June 3, 2014
    Assignee: Shimadzu Corporation
    Inventors: Shuzo Maruyama, Yosuke Iwata
  • Patent number: 8741146
    Abstract: A method for the recovery of acids and other materials from hydrometallurgic process solutions comprising processing said solutions utilizing a simulated moving bed chromatographic method to produce at least two product streams.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: June 3, 2014
    Assignee: Amalgamated Research LLC
    Inventors: Michael M. Kearney, Michael W. Mumm, Lawrence Velasquez, William Jacob, IV
  • Patent number: 8741149
    Abstract: A method of chemical separation includes dispensing a sample from a sample pumping system, pumping a solvent from a solvent gradient pumping system to elute the dispensed sample through a separation column, identifying an analyte of interest in the eluting sample, and pumping a solvent from the sample pumping system for peak parking of the analyte in the separation column.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: June 3, 2014
    Assignee: Micromass UK Limited
    Inventor: Christopher Hughes
  • Patent number: 8741135
    Abstract: A preparative chromatography column is equipped with one or more valves that can each be used to both inject a column packing into the column or withdraw used packing from the column, in addition to cleaning the supply and discharge lines associated with the valve itself, all by moving a movable plug within the valve body and all without protruding into the column interior. Each valve is mounted on the lateral wall of the column just above the filter plate at the column floor, and the plug is movable between a closed position in which the end surface of the plug is flush with the inner wall of the column and an open position in which the plug is recessed within the bore. Each valve has two additional ports in its valve body, positioned such that when the plug is closed, both ports are open to the valve bore, and when the plug is open, at least one of the ports is open to the bore. The position of the plug within the valve bore determines the valve function.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: June 3, 2014
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Maurice Agee, Sebastien Lefebvre, Sebastien Magnaud, Philippe Vernot
  • Patent number: 8728309
    Abstract: In a system and method for feature alignment in chromatographic systems, the system runs a first sample through a first separation column. The system determines a first set of features for the first sample run. The system runs a second sample through a second separation column and detects a second set of features for the second sample run. The system estimates a systematic shift in features between the first sample run through the first separation column and the second sample run through the second separation column. The system adjusts the second set of features detected for the second sample run through the second separation column based on the estimated systematic shift to obtain a third set of adjusted features.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: May 20, 2014
    Assignee: Agilent Technologies, Inc.
    Inventor: Xiangdong Don Li
  • Patent number: 8715499
    Abstract: A method of operating chromatography column apparatus comprising a column tube (101) and first and second discrete end cell structures, associated with the respective ends of the column tube and positionable to close off the column tube and define therein a column space for retaining chromatography medium in use of the apparatus. The first end cell portion comprises a piston portion (106) fitting slidably in the column tube. The column tube and the second end cell structure are separated to provide an access spacing between them. The piston portion (106) of the first end cell structure is advanced through the column tube to expose it at the open second end of the column tube, for maintenance of the piston portion thus exposed. Corresponding chromatography apparatus is another aspect of the disclosure.
    Type: Grant
    Filed: September 14, 2009
    Date of Patent: May 6, 2014
    Assignee: Pall Corporation
    Inventors: Gerald James Spencer, Neil John Walker, John Mackay Scott
  • Patent number: 8702984
    Abstract: In an embodiment, a method for manufacturing a thin layer chromatography (“TLC”) plate is disclosed. The method includes forming a layer of elongated nanostructures (e.g., carbon nanotubes), priming the elongated nanostructures with one or more adhesion priming layers, and at least partially coating the elongated nanostructures with a coating. The coating includes a stationary phase and/or precursor of a stationary phase for use in chromatography. The stationary phase may be functionalized with hydroxyl groups by exposure to a base or acid. The stationary phase may further be treated with a silane (e.g., an amino silane) to improve the performance of the TLC plate. Embodiments for TLC plates and related methods are also disclosed.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: April 22, 2014
    Assignees: US Synthetic Corporation, Brigham Young University
    Inventors: Matthew R. Linford, David Scott Jensen, Andrew E. Dadson, Robert C. Davis
  • Patent number: 8696900
    Abstract: A chromatography cartridge and method of manufacturing same. A chromatography cartridge of the present invention can include a tubular housing having an open end and an inner surface, and a plug. The plug can be positioned within the open end of the tubular housing and can have an outer circumferential surface, a substantial portion of the outer circumferential surface being fused to the inner surface of the tubular housing. A method for manufacturing a chromatography cartridge can include coupling at least a portion of the outer surface of the plug to at least a portion of the inner surface of the tubular housing in response to rotating at least one of the plug and the tubular housing about the longitudinal axis with respect to the other of the plug and the tubular housing.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: April 15, 2014
    Assignee: Agilent Technologies, Inc.
    Inventor: Nicholas DeMarco
  • Patent number: 8696903
    Abstract: A method for making conduits includes inserting an inner tube into an outer tube and melting a portion of the inner tube to form a bond with the outer tube. The inner tube includes a polymeric material and the outer tube includes a material having a greater yield strength than the polymeric material. A conduit includes one or more inner tubes at least one of which is melt-bonded to one or more outer tubes. An analytical instrument includes a separation column, a solvent reservoir and pump, a sample injector, a detector to observe an eluent of the separation column, and tubing to transport fluid between components of the instrument.
    Type: Grant
    Filed: September 14, 2006
    Date of Patent: April 15, 2014
    Assignee: Waters Technologies Corporation
    Inventors: John Buchanan, Dennis DellaRovere
  • Patent number: 8696910
    Abstract: A chromatography cartridge and method of manufacturing same. A chromatography cartridge of the present invention can include a tubular housing having an open end and an inner surface, and a plug. The plug can be positioned within the open end of the tubular housing and can have an outer circumferential surface, a substantial portion of the outer circumferential surface being fused to the inner surface of the tubular housing. A method for manufacturing a chromatography cartridge can include coupling at least a portion of the outer surface of the plug to at least a portion of the inner surface of the tubular housing in response to rotating at least one of the plug and the tubular housing about the longitudinal axis with respect to the other of the plug and the tubular housing.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: April 15, 2014
    Assignee: Agilent Technologies, Inc.
    Inventor: Nicholas DeMarco
  • Patent number: 8691088
    Abstract: A method of preparing an ultra-nanoscale-LC monolithic separation medium for use in capillary columns, or channels in microfabricated devices (microchips), and capillaries prepared by the method are disclosed. The application of moderate positive pressure to both ends of the capillary during the monolith polymerization process permits the preparation of monolithic capillary columns having very low i.d., e.g., 25 ?m and smaller, with enhanced mass transfer properties and low back pressures, and excellent column-to-column reproducibility of retention times.
    Type: Grant
    Filed: April 21, 2006
    Date of Patent: April 8, 2014
    Assignee: Northeastern University
    Inventors: Alexander R. Ivanov, Li Zang, Barry L. Karger
  • Patent number: 8685240
    Abstract: A capillary column (10) includes a tube structure having inner walls (14) and a sol-gel substrate (16) coated on a portion of inner walls (14) to form a stationary phase coating (18) on inner walls (14). The sol solution used to prepare the sol-gel substrate (16) has at least one baseline stabilizing reagent and at least one surface deactivation reagent resulting in the sol-gel substrate (16) having at least one baseline stabilizing reagent residual and at least one surface deactivating reagent residual. A method of making the sol-gel solution is by mixing suitable sol-gel precursors to form the solution, stabilizing the solution by adding at least one baseline stabilization reagent, deactivating the solution by adding at least one surface deactivation reagent to the solution, and reacting the solution in the presence of at least one catalyst.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: April 1, 2014
    Assignee: University of South Florida
    Inventors: Abdul Malik, Abuzar Kabir, Chetan Shende
  • Patent number: 8685241
    Abstract: A method, apparatus, and system are described to pack and unpack resin in a chromatography-column. One or more inflatable seals are deflated to pack a resin slurry from a bottom outlet valve into a resin bed chamber located between an outer shell of the column and an inner frit of the chromatography-column. The resin slurry is pumped into and through an outlet packing-and-running port and passed one or more deflated inflatable seals to pack the resin bed to a designated pressure with resin slurry. The inflatable seals are inflated to seal the resin bed in place.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: April 1, 2014
    Assignee: Sepragen Corporation
    Inventors: Vinit Saxena, Renu Saxena, David Zuffi