Patents Examined by Eva Yan Montalvo
  • Patent number: 8791541
    Abstract: Provided is a method of fabricating a backside illuminated image sensor that includes providing a device substrate having a frontside and a backside, where pixels are formed at the frontside and an interconnect structure is formed over pixels, forming a re-distribution layer (RDL) over the interconnect structure, bonding a first glass substrate to the RDL, thinning and processing the device substrate from the backside, bonding a second glass substrate to the backside, removing the first glass substrate, and reusing the first glass substrate for fabricating another backside-illuminated image sensor.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: July 29, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuan-Chieh Huang, Dun-Nian Yaung, Chih-Jen Wu, Chen-Ming Huang
  • Patent number: 8785320
    Abstract: A high aspect ratio metallization structure is provided in which a noble metal-containing material is present at least within a lower portion of a contact opening located in a dielectric material and is in direct contact with a metal semiconductor alloy located on an upper surface of a material stack of at least one semiconductor device. In one embodiment, the noble metal-containing material is plug located within the lower region of the contact opening and an upper region of the contact opening includes a conductive metal-containing material. The conductive metal-containing material is separated from plug of noble metal-containing material by a bottom walled portion of a U-shaped diffusion barrier. In another embodiment, the noble metal-containing material is present throughout the entire contact opening.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: July 22, 2014
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Fenton R. McFeely
  • Patent number: 8779494
    Abstract: The instant disclosure relates to a high-k metal gate random access memory. The memory includes a substrate, a plurality of bit line units, source regions, gate structures, drain regions, word line units, and capacitance units. The substrate has a plurality of trenches, and the bit line units are arranged on the substrate. The source regions are disposed on the bit line units, and the gate structures are disposed on the source regions. Each gate structure has a metal gate and a channel area formed therein. The gate structures are topped with the drain regions. The word lines units are arranged between the source and drain regions. The capacitance units are disposed on the drain regions. Another memory is also disclosed, where each drain region and a portion of each gate structure are disposed in the respective capacitance unit, with the drain region being a lower electrode layer.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: July 15, 2014
    Assignee: Inotera Memories, Inc.
    Inventors: Tzung-Han Lee, Chung-Lin Huang, Ron-Fu Chu
  • Patent number: 8766371
    Abstract: There is provided a semiconductor structure and a method for manufacturing the same. The semiconductor structure according to the present invention comprises: a semiconductor substrate; a channel region formed on the semiconductor substrate; a gate stack formed on the channel region; and source/drain regions formed on both sides of the channel region and embedded in the semiconductor substrate. The gate stack comprises: a gate dielectric layer formed on the channel region; and a conductive layer positioned on the gate dielectric layer. For an nMOSFET, the conductive layer has a compressive stress to apply a tensile stress to the channel region; and for a pMOSFET, the conductive layer has a tensile stress to apply a compressive stress to the channel region.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: July 1, 2014
    Assignee: Institute of Microelectronics, Chinese Academy of Sciences
    Inventors: Huilong Zhu, Qingqing Liang, Zhijiong Luo, Haizhou Yin
  • Patent number: 8760909
    Abstract: A memory and a manufacturing method thereof are provided. A plurality of stacked structures extending along a first direction is formed on a substrate. Each of the stacked structures includes a plurality of first insulating layers and a plurality of second insulating layers. The first insulating layers are stacked on the substrate and the second insulating layers are respectively disposed between the adjacent first insulating layers. A plurality of trenches extending along the first direction is formed in each of the stacked structures. The trenches are respectively located at two opposite sides of each of the second insulating layers. A first conductive layer is filled in the trenches. A plurality of charge storage structures extending along a second direction is formed on the stacked structures and a second conductive layer is formed on each of the charge storage structures.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: June 24, 2014
    Assignee: MACRONIX International Co., Ltd.
    Inventors: Jyun-Siang Huang, Wen-Jer Tsai
  • Patent number: 8759128
    Abstract: A light emitting diode (LED) die includes a semiconductor substrate having an n-type confinement layer, a multiple quantum well (MQW) layer in electrical contact with the n-type confinement layer configured to emit electromagnetic radiation, a p-type confinement layer in electrical contact with the multiple quantum well (MQW) layer; multiple light extraction structures on the n-type confinement layer configured to scatter the electromagnetic radiation; and an electrode in a recess embedded in the n-type confinement layer proximate to the light extraction structures. A method of fabrication includes: forming the semiconductor substrate; forming a recess in the n-type confinement layer having sidewalls and a planar bottom surface; forming an electrode in the recess comprising a conductive material conforming to the sidewalls and to the bottom surface of the recess; planarizing the electrode; and forming a plurality of light extraction structures in the n-type confinement layer proximate to the electrode.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: June 24, 2014
    Assignee: SemiLEDS Optoelectronics Co., Ltd.
    Inventors: Jiunn-Yi Chu, Trung Tri Doan
  • Patent number: 8754405
    Abstract: An organic electroluminescence device includes a cathode, a stacked structure provided on the cathode and including an organic layer that includes an organic light emitting layer, and a transparent anode provided on the stacked structure, The transparent anode includes a metal oxide and a conductive polymer.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: June 17, 2014
    Assignee: Ricoh Company, Ltd.
    Inventors: Yoshinori Okada, Hiroyuki Takahashi
  • Patent number: 8754441
    Abstract: The semiconductor light-emitting device (11) of the present invention includes a substrate (1); a laminate semiconductor layer (15) comprised of an n-type semiconductor layer (3) formed on the substrate (1), a light-emitting layer (4) laminated on the n-type semiconductor layer (3) and a p-type semiconductor layer (5) laminated on the light-emitting layer (4); a concavo-convex part (33) for improving a light extraction efficiency, which is formed on all or a part of a top surface (15a) of the laminate semiconductor layer (15); a high-concentration p-type semiconductor layer (8) having a higher dopant concentration than that of the p-type semiconductor layer (5), which is laminated on a convex part (33a) that constitutes the concavo-convex part (33) of the laminate semiconductor layer (15); and a translucent current diffusion layer (20) laminated on at least the high-concentration p-type semiconductor layer (8).
    Type: Grant
    Filed: October 16, 2009
    Date of Patent: June 17, 2014
    Assignee: Toyoda Gosei Co., Ltd.
    Inventors: Hironao Shinohara, Hiromitsu Sakai
  • Patent number: 8748988
    Abstract: A semiconductor device has a semiconductor substrate, a field insulating film disposed on a surface of the semiconductor substrate, a base insulating film disposed on a surface of the field insulating film, and a resistor disposed on the base insulating film. The resistor is formed of a polycrystalline silicon film and has a resistance region and electrode lead-out regions disposed at both ends of the resistance region. A portion of the base insulating film below the resistance region projects with respect to portions of the base insulating film below the electrode lead-out regions so that a height difference occurs therebetween. The resistance region has a thickness thinner than that of each of the electrode lead-out regions.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: June 10, 2014
    Assignee: Seiko Instruments Inc.
    Inventor: Yuichiro Kitajima
  • Patent number: 8742579
    Abstract: A semiconductor device is made by providing a sacrificial substrate and depositing an adhesive layer over the sacrificial substrate. A first conductive layer is formed over the adhesive layer. A polymer pillar is formed over the first conductive layer. A second conductive layer is formed over the polymer pillar to create a conductive pillar with inner polymer core. A semiconductor die or component is mounted over the substrate. An encapsulant is deposited over the semiconductor die or component and around the conductive pillar. A first interconnect structure is formed over a first side of the encapsulant. The first interconnect structure is electrically connected to the conductive pillar. The sacrificial substrate and adhesive layers are removed. A second interconnect structure is formed over a second side of the encapsulant opposite the first interconnect structure. The second interconnect structure is electrically connected to the conductive pillar.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: June 3, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Reza A. Pagaila, Byung Tai Do, Shuangwu Huang
  • Patent number: 8736001
    Abstract: A fingerprint sensor may include a substrate, and a finger sensing IC on the substrate and including a finger sensing area on an upper surface thereof for sensing an adjacent finger. The fingerprint sensor may include an encapsulating material on the finger sensing IC and covering the finger sensing area, and a bezel adjacent the finger sensing area and on an uppermost surface of the encapsulating layer.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: May 27, 2014
    Assignee: Authentec, Inc.
    Inventors: Matthew Salatino, Anthony Iantosca
  • Patent number: 8736019
    Abstract: A semiconductor device includes unlined and sealed trenches and methods for forming the unlined and sealed trenches. More particularly, a superjunction semiconductor device includes unlined, and sealed trenches. The trench has sidewalls formed of the semiconductor material. The trench is sealed with a sealing material such that the trench is air-tight. First and second regions are separated by the trench. The first region may include a superjunction Schottky diode or MOSFET. In an alternative embodiment, a plurality of regions are separated by a plurality of unlined and sealed trenches.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: May 27, 2014
    Assignee: Icemos Technology Ltd.
    Inventors: Samuel Anderson, Koon Chong So
  • Patent number: 8723289
    Abstract: A method for manufacturing an interconnection wiring structure of a semiconductor device includes forming an isolation region, which arranges active regions in a diagonal direction, in a semiconductor substrate; forming first damascene trenches, which open upper portions of a bit line contacts, by selectively etching a second interlayer insulation layer; forming bit lines which fill the first damascene trenches; forming second damascene trenches, which expose portions of the active region, by selectively etching the portion of a second interlayer insulation layer between the bit lines and the portion of the first interlayer insulation layer thereunder; attaching trench spacer on side walls of the second damascene trench; and forming storage node contact lines which fill the second damascene trenches.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: May 13, 2014
    Assignee: SK hynix Inc.
    Inventor: Chun Soo Kang
  • Patent number: 8722476
    Abstract: A compound semiconductor device includes a compound semiconductor layer, a gate electrode disposed above the compound semiconductor layer, and a gate insulation film. The gate insulation film is interposed between the compound semiconductor layer and the gate electrode. The gate insulation film contains a fluorine compound at least in the vicinity of the interface with the compound semiconductor layer.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: May 13, 2014
    Assignee: Fujitsu Limited
    Inventor: Yoichi Kamada
  • Patent number: 8716829
    Abstract: A semiconductor device includes unlined and sealed trenches and methods for forming the unlined and sealed trenches. More particularly, a superjunction semiconductor device includes unlined, and sealed trenches. The trench has sidewalls formed of the semiconductor material. The trench is sealed with a sealing material such that the trench is air-tight. First and second regions are separated by the trench. The first region may include a superjunction Schottky diode or MOSFET. In an alternative embodiment, a plurality of regions are separated by a plurality of unlined and sealed trenches.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: May 6, 2014
    Assignee: Icemos Technology Ltd.
    Inventors: Samuel Anderson, Koon Chong So
  • Patent number: 8710514
    Abstract: A light emitting die package is provided which includes a metal substrate having a first surface and a first conductive lead on the first surface. The first conductive lead is insulated from the substrate by an insulating film. The first conductive lead forms a mounting pad for mounting a light emitting device. The package includes a metal lead electrically connected to the first conductive lead and extending away from the first surface.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: April 29, 2014
    Assignee: Cree, Inc.
    Inventors: Peter Scott Andrews, Ban P. Loh
  • Patent number: 8710512
    Abstract: An optoelectronic semiconductor chip, comprising a first contact location (1) and a second contact location (2), and a reflective layer (3), which is directly electrically conductively connected to the second contact location. The reflective layer contains a metal that tends toward migration, and the reflective layer is arranged in such a way that a migration path (4) for the metal can form between the second and the first contact location. A means (6) which, during operation of the semiconductor chip, forms an electric field that counteracts the migration of the metal is provided at the semiconductor chip.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: April 29, 2014
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Tony Albrecht, Andreas Weimar, Anna Kasprzak-Zablocka, Christian Eichinger, Kerstin Neveling
  • Patent number: 8710499
    Abstract: It is an object to manufacture a highly reliable display device using a thin film transistor having favorable electric characteristics and high reliability as a switching element. In a bottom gate thin film transistor including an amorphous oxide semiconductor, an oxide conductive layer having a crystal region is formed between an oxide semiconductor layer which has been dehydrated or dehydrogenated by heat treatment and each of a source electrode layer and a drain electrode layer which are formed using a metal material. Accordingly, contact resistance between the oxide semiconductor layer and each of the source electrode layer and the drain electrode layer can be reduced; thus, a thin film transistor having favorable electric characteristics and a highly reliable display device using the thin film transistor can be provided.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: April 29, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Toshinari Sasaki, Junichiro Sakata, Masashi Tsubuku
  • Patent number: 8710668
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a substrate; molding a first encapsulation above the substrate; forming a via through the first encapsulation; mounting an integrated circuit above the substrate and between sides of the first encapsulation; and forming a second encapsulation covering the integrated circuit and the first encapsulation.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: April 29, 2014
    Assignee: Stats ChipPac Ltd.
    Inventors: HyungMin Lee, HeeJo Chi, YeongIm Park
  • Patent number: 8692365
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a base substrate; attaching a package stack assembly, having a contact pad, on the base substrate; applying an encapsulation having a cavity with a tapered side directly over the package stack assembly, the contact pad exposed in the cavity; attaching a recessed circuitry unit in the cavity and on the contact pad, a chamber of the cavity formed by the recessed circuitry unit and the tapered side of the cavity; and mounting a thermal structure over the recessed circuitry unit, the cavity, and the encapsulation.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: April 8, 2014
    Assignee: Stats Chippac Ltd.
    Inventors: DongSoo Moon, Taewoo Lee, Soo-San Park, SooMoon Park, Sang-Ho Lee